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We explore the scaling behavior of an unsteady flow that is generated by an oscillating body of finite size
in a gas. If the gas is gradually rarefied, the Navier-Stokes equations begin to fail and a kinetic description
of the flow becomes more appropriate. The failure of the Navier-Stokes equations can be thought to take
place via two different physical mechanisms: either the continuum hypothesis breaks down as a result of a
finite size effect or local equilibrium is violated due to the high rate of strain. By independently tuning the
relevant linear dimension and the frequency of the oscillating body, we can experimentally observe these
two different physical mechanisms. All the experimental data, however, can be collapsed using a single
dimensionless scaling parameter that combines the relevant linear dimension and the frequency of the body.
This proposed Knudsen number for an unsteady flow is rooted in a fundamental symmetry principle,
namely, Galilean invariance.
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The Navier-Stokes (NS) equations of hydrodynamics
can be obtained perturbatively from the kinetic theory of
gases in the limit of small Knudsen number, Kn ¼
ðλ=LÞ → 0 [1]. Here, λ is the mean free path in the gas,
andL represents a characteristic length scale of the flow. As
Kn → 0, it follows from statistical mechanics that density
fluctuations in the gas vanish [2], leading to the notion of a
“fluid particle.” This continuum hypothesis becomes less
accurate as Kn grows, eventually leading to the failure of
the NS equations for Kn≳ 0.1. Likewise, the NS equations
break down if the local value of the strain rate, Sij ¼
1
2
½ð∂ui=∂xjÞ þ ð∂uj=∂xiÞ�, becomes so large that the con-

dition τSij ≪ 1 no longer holds. Here, ui represents the
velocity vector, and τ is the relaxation time that character-
izes the rate of decay of a perturbation to thermodynamic
equilibrium. As τSij grows, the fluid particle becomes
deformed on shorter and shorter time scales, eventually
violating the local equilibrium assumption. For a broad
class of flows, breakdown of the continuum hypothesis
and violation of local equilibrium can be thought to
be equivalent, because τSij ∼ τðU=LÞ ∼ ðλ=cÞðU=LÞ∼
Ma × Kn. Here, the Mach number Ma ¼ U=c compares
the speed of sound c to the characteristic flow velocity U,
and it is assumed to remain small and slowly varying. Thus,
either Kn or τSij emerges as the relevant scaling parameter
for determining the crossover from hydrodynamics to
kinetic theory.
To demonstrate the limitations of the above-described

widely accepted reasoning, we consider the canonical
problem of an infinite plate oscillating at a prescribed
angular frequency ω0 in a gas (Stokes second problem) [3].
We assume the oscillation amplitude to be small and the
geometry to be such that the velocity field is uxðx; y; 0Þ ¼
U0 cosω0t, uy ¼ 0, and uz ¼ 0. Since the plate is infinite
(l → ∞), the “standard” size-based Knudsen number

Knl ¼ λ=l remains zero at all limits and cannot be relevant.
The scaling parameter here is the Weissenberg number,
Wi ¼ ω0τ [4,5], and one can recover the correct Knudsen
number, Knδ ¼ λ=δ, using the boundary layer thickness,
δ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2νg=ω0

p
. (Indeed, Knδ ∼

ffiffiffiffiffiffi
Wi

p
, given the kinematic

viscosity is νg ∼ λ2=τ.) Regardless, τSij ≈ τðU0=δÞ∼
Ma × Knδ. Thus, as above, the validity of the NS equations
(and the scaling properties of the flow) is determined either
by the flow length scale (Knδ) or by the flow time scale
(τSij or Wi), and both parameters lead to the same
conclusion. While this analysis for an infinite plate is
reasonable, it does not work for a finite plate (or a finite-
sized body). For a finite-sized body, Knl may be nonzero at
some limit and appear in the problem alongside Wi. This is
because the oscillation frequency ω0 is in general inde-
pendent of the linear dimensions of the body and an
externally prescribed parameter. Recent literature on scal-
ing of such flows reflects this complexity: some reports
suggest Knl scaling [6–8] and others Wi scaling [4,9,10].
The purpose of the present work is to study this nontrivial
limit and to recover, both experimentally and theoretically,
the universal scaling hidden in the apparent contradictions.
Our experimental measurements are based on quartz

crystals, and micro- and nanomechanical resonators. When
driven to oscillations in a gas, these structures generate
oscillatory flows and dissipate energy. The gases used are
high-purity He, N2, and Ar. The approximate equation of
motion of a mechanical resonator (in any resonant mode) is
that of a damped harmonic oscillator: ̈ξþ ðω0=QtÞ_ξþ
ω0

2ξ ¼ F ðtÞ=mr, where ξðtÞ is the amplitude, mr is the
mass, 1=Qt is the total (dimensionless) dissipation, and
ω0 ¼ 2πf0 is the angular frequency of the mode driven by
the sinusoidal force F ðtÞ. In a typical experiment, the
pressure p of the gas is changed, and 1=Qt and ω0 are
measured. For all practical purposes, ω0 stays constant
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through p sweeps. To obtain the (dimensionless) gas
dissipation 1=Qg, we calculate 1=Qg ¼ ð1=QtÞ − ð1=Q0Þ,
where 1=Q0 is the intrinsic dissipation (obtained at the
lowest p). Relevant parameters of our resonators and other
details can be found in the Supplemental Material [11].
All our 1=Qg vs p data possess similar features

[Figs. 1(a), 2(a), 3(a), 3(b), and S2–S10]. At low p,
ð1=QgÞ ∝ p. This is the kinetic limit [31,32], where the
mean free path λ and the relaxation time τ of the gas are
both large. At high p, the NS equations are to be used [3].

The crossover between these two asymptotes (transitional
flow regime) manifests itself as a slope change in the data.
The pressure pc, around which this transition occurs, is
therefore a fundamentally important parameter and pro-
vides insight into how this flow scales. (pc, τc, and λc
henceforth indicate transition values.)
We first analyze the dissipation of a macroscopic

quartz crystal resonator in shear-mode oscillations in N2

(Fig. 1(a)). The resonance frequency is f0 ¼ ðω0=2πÞ ≈
5 MHz, and the relevant linear dimension is roughly the
diameter of the metal electrode on the quartz, lx ∼ 5 mm
[Fig. 1(a), inset]. For the shown pressures, Knl ¼ λ=lx
is in the range 10−5 ≲ Knl ≲ 10−1, found using
λ ≈ ðkBTÞ=ð

ffiffiffi
2

p
πdg2pÞ, where kBT is the thermal energy

and dg is the diameter of a N2 molecule. Because Knl
remains small, we treat the quartz as an infinite plate and
Wi ¼ ω0τ is left as the only relevant scaling parameter. The
transition from molecular flow (ω0τ ≫ 1) to viscous flow
(ω0τ ≪ 1) must take place at ~Wi ¼ ω0τc ≈ 1. Hence, we
call this the “high-frequency limit.” Next, we perform the
same 1=Qg vs p measurement on similarly large quartz
resonators but with different f0. We determine pc con-
sistently for all by finding the pressure at which 1=Qg

deviates from the low-p asymptote by 25%. The inset of
Fig. 1(b) shows the measured pc values in N2 as a function
of f0. The data scale as pc ¼ constant × f0. This is
consistent with the flow being scaled by Wi ¼ ω0τ and
ω0τc ≈ 1 determining the transition: τ ¼ CN2

=p for a near-
ideal gas with CN2

being a constant; ω0τc≈ω0ðCN2
=pcÞ≈1,

and pc ≈ 2πCN2
× f0. The experiment provides the empiri-

cal value CN2
¼ 610� 30 × 10−9 in units of s · Torr.

Repeating the same experiment for He and Ar, we find
CHe ¼ 560� 70 × 10−9 and CAr ¼ 750� 80 × 10−9, both
in units of s · Torr. Figure 1(b) (main) is a collapse plot of
τ=Cg for all three gases as a function of p, showing the
degree of linearity. The measured values of Cg for all gases
are a factor of ∼5 larger than the kinetic theory predic-
tions [11,33].
The data in Fig. 1(a) can be fit accurately [4]. For a large

plate resonator (Knl ≈ 0), the dissipation in a gas of
viscosity μg and density ρg can be found as [11,30]

1

Qg
¼ Sr

mr
fðω0τÞ

ffiffiffiffiffiffiffiffiffi
μgρg
2ω0

r
: ð1Þ

Here, Sr is the surface area and mr is the mass of the
plate resonator, and f is the scaling function [30]
found as fðxÞ¼½1=ð1þx2Þ3=4�fð1þxÞcos½ðtan−1xÞ=2�−
ð1−xÞsin½ðtan−1xÞ=2�g. The fit in Fig. 1(a) was obtained
using the empirical relation τ ¼ ð610 × 10−9½s · Torr�Þ=p
and experimental parameters [11].
Now, we turn to the “low-frequency limit” of ω0τ → 0.

Figure 2(a) shows the pressure-dependent dissipation
of a low-frequency microcantilever with linear dimensions
lx × ly × lz ≈ 32 × 350 × 1 μm3 [inset Fig. 2(a)] and

101 102 103

10-2

10-1

τ /
 C

g  
(s

 /  s
.T

or
r)

 

Pressure p (Torr)

 Ar
 N2

 He

10-1 100 101 102 103
10-9

10-8

10-7

10-6

D
is

si
pa

tio
n 

 1 
/ Q

g

Pressure p (Torr)

(a)

(b)

l
x

 
∼ 5  mm

 

f
0

 
≈ 5 MHz

 

p
c
 ≈ rroT    81

lz
y

x

z
lx

ξ

10 6 10 7 10 8

101

102

T
ra

ns
iti

on
 P

re
ss

ur
e 

p c (
T

or
r)

Resonance Frequency f
0
 (Hz)

FIG. 1. (a) Dissipation in N2 as a function of pressure for a
quartz crystal (inset) oscillating in shear mode at f0 ≈ 5 MHz.
Solid line is a fit to Eq. (1). Transition from the kinetic to viscous
regime occurs at pc ≈ 18 Torr. (b) The inset shows pc vs f0 for
different quartz crystals in N2 (Knl ≈ 0). The linear fit gives the
empirical τ as a function of p. The main figure shows τ=Cg for He,
N2, and Ar as a function of p. Normalization by Cg accounts for
the differences between gases [11]. Dashed line is 1=p. Error bars
are not shown when smaller than symbols.
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frequency f0 ¼ 18.8 kHz. We define Knl ¼ λ=lx, as
suggested in Refs. [7,34,35]. The transition in Fig. 2(a)
takes place around pc ≈ 1.2 Torr, where Knl ≈ 1 and
ω0τ ≈ 0.06. (Knl ≈ 1 indicates deviation from the low-p
molecular asymptote.) The features in Fig. 2(a) are very
similar to those in Fig. 1(a): two asymptotes with a well-
defined pc. Inspection of the ranges of Wi and Knl suggests
that the transition cannot be tied to frequency (Wi) but must
be due to the length scale (Knl). In other words, the
transition from molecular flow (Knl ≫ 1) to viscous flow
(Knl ≪ 1) appears to take place around ~Knl ¼ λc=lx ≈ 1.
While the data trace in Fig. 2(a) looks similar to that in
Fig. 1(a), the transitions observed in the two are due to
different physical mechanisms.
In Fig. 2(b), we plot the consistently found pc in N2 for

different sets of devices. Here, the relevant linear dimension
lx is kept constant for each set, but the frequency is varied:
diamond nanocantilevers [29] with lx ≈ 800 nm and
0.4 MHz ≤ f0 ≤ 40 MHz; silicon microcantilevers with
lx ≈ 32 μm and 14 kHz ≤ f0 ≤ 2.4 MHz; and quartz
crystals with lx ∼ 5 mm and 5 MHz ≤ f0 ≤ 75 MHz.
Surprisingly, the linear trend between pc and f0 holds
only for high frequencies, with a saturation at low frequen-
cies. The saturation value of pc is determined by the
condition that λ ∼ lx (dotted horizontal lines). The oscil-
lation frequency (and Wi) becomes the relevant scaling
parameter above a certain frequency; at low frequency, the
length scale (Knl) takes over. Thus, the physics is deter-
mined by an interplay between the relevant length scale of
the body and its oscillation frequency.
To gain more insight into the transition, we scrutinize

~Knl ¼ λc=lx and ~Wi ¼ ω0τc for each device at its pc.
Figure 2(c) shows ~Knl and ~Wi plotted in the xy plane using
logarithmic and linear axes (inset); the dashed lines are
~Wiþ ~Knl ¼ 1. The data suggest that the dissipation is a
function of both Wi and Knl, and it approximately depends
on Wiþ Knl.

We now justify the observed scaling more rigorously by
inspecting the stress tensor σij obtained from the Chapman-
Enskog expansion of the Boltzmann equation in the
relaxation time approximation. To second order of small-
ness, the expansion is [36]

σij ≈ σð1Þij þ σð2Þij ¼ 2ρgθ

�
τSij − τ

� ∂
∂tþ u ·∇

�
ðτSijÞ

þ 2τ2
�
SikSkj −

δij
3
SklSkl

�

− 2τ2ðSikΩkj þ SjkΩkiÞ
�
: ð2Þ

As usual, Sij ¼ 1
2
½ð∂ui=∂xjÞ þ ð∂uj=∂xiÞ� and Ωij ¼

1
2
½ð∂ui=∂xjÞ − ð∂uj=∂xiÞ� are the strain rate and the vor-

ticity tensors, respectively, with i, j ¼ x, y, z, and
θ¼kBT=mg. The last two terms of σij are the second rank

tensor ξð2Þij of order ðτSÞ2, where S represents the strain rate
tensor. There are two dimensionless groups in Eq. (2): the
total time derivative τðd=dtÞ¼τ½ð∂=∂tÞþu·∇� and τS. One
notices that these two dimensionless groups both remain
invariant under Galilean transformations [11]. In order to
satisfy Galilean invariance, therefore, the Chapman-Enskog
expansion of kinetic equations must be in powers of these
parameters only; powers of non-Galilean-invariant param-
eters, e.g., “bare” ∂=∂t, are forbidden in a flow in an
arbitrary geometry. Accordingly, one can formally write the
Galilean-invariant stress tensor up to all orders as

σij¼ 2ρgθ

�
τSijþ

X∞
n¼2

�
αn−1ð−τÞn−1

� ∂
∂tþu ·∇

�
n−1

ðτSijÞ

þξðnÞij

��
: ð3Þ
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FIG. 2. (a) Dissipation vs pressure for a microcantilever (inset) with lx × ly × lz ≈ 32 × 350 × 1 μm3 and f0 ≈ 18.8 kHz in N2. Solid
line is a fit to Eq. (4); dotted (blue) line is a fit to the cylinder solution; pc ≈ 1.2 Torr. (b) pc vs f0 in N2 for three sets of devices with
different characteristic dimensions. Diamonds are nanocantilevers from Ref. [29]; circles are microcantilevers; squares are macroscopic
resonators from Fig. 1(b). (c) ~Wi and ~Knl in He, N2, and Ar for all devices. Dashed line is ~Wiþ ~Knl ¼ 1. The inset shows the same data
using linear axes; the large data points correspond to binned average values.

PRL 118, 074505 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

17 FEBRUARY 2017

074505-3



Here, αn−1 are constants, and the tensors ξðnÞij ∼ ðτSÞn are
not necessarily zero [37].
A closed form formula can be obtained for the dis-

sipation of a finite-sized body oscillating in a fluid, if the
deviations from the infinite plate solution [30] are assumed
small. As in the infinite plate [11,30], we set all αk ≈ 1 and
all ξðnÞij ≈ 0 in Eq. (3). After nondimensionalization with
û ¼ u=c, t̂ ¼ ω0t and ∇̂ ¼ l∇, the stress tensor σij for a
finite-sized body becomes an expansion in powers of the
operator τðd=dtÞ ¼ ω0τð∂=∂ t̂Þ þ Knlû · ∇̂. The scaling
parameter therefore becomes approximately ω0τ þ Knl,
and the infinite plate solution in Eq. (1) can be generalized
by replacing ω0τ with ω0τ þ Knl. Thus, we deduce [11]

1

Qg
≈

Sr
mr

f

�
ω0τ þ

λ

lx

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μgρgτ

2ðω0τ þ λ
lx
Þ

s
ð4Þ

for a finite-sized body oscillating in a fluid. Several points
are noteworthy. First, Eq. (4) is valid in the asymptotic and
the intermediate ranges. Second, the nondimensionaliza-
tion above is eminently reasonable, because the only
velocity scale in kinetic theory is the thermal velocity
∼c. Regardless, the dimensional solution is obtained only
after imposing the boundary conditions. Finally, Galilean
invariance dictates the form of d=dt and leads to a scaling
parameter ≈ Wiþ Knl, instead of a more involved combi-
nation of Wi and Knl.
A number of fits to experimental data using Eq. (4) are

shown in Figs. 2(a), 3(a), and 3(b), as well as in the
Supplemental Material [11]. The data in Figs. 3(a) and 3(b)
are examples of the low- and high-frequency limits,
respectively. Here, different-sized but similar-frequency
resonators are compared. All fits are obtained as follows.
First, Sr=mr is determined from linear dimensions or from
separate measurements when necessary [11]. For each
pressure, the value of ω0τ þ ðλ=lxÞ is computed using τ ¼
Cg=p and λ ≈ 0.23ðkBT=dg2pÞ of the gas, and lx and ω0 of
the resonator. Finally, the dissipation is found from Eq. (4)
at each pressure using tabulated μg and ρg, and our
empirical τ. To improve the fits, the theoretical prediction
is multiplied by an Oð1Þ constant Qp. The collapse plot in
Fig. 3(c) is obtained by properly dividing the data by
ðSr=mrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifðμgρgτÞ=2½ω0τ þ ðλ=lxÞ�g
p

Qp and plotting the
results as a function of ω0τ þ ðλ=lxÞ. The thick solid line
shows fðWiþ KnlÞ. There are no free parameters other
than the fitting factors Qp with mean Q̄p ≈ 2.6� 0.5 [11].
At the viscous limit Wiþ Knl ≪ 1, the cantilever

data deviate from the plate solution and converge to a
cylinder solution. The cylinder solution yields 1=Qg ≈
½ΓIðReωÞ�=½1=T0 þ ΓRðReωÞ� [12,13]. Here, ΓðReωÞ ¼
ΓRðReωÞ þ iΓIðReωÞ is the complex hydrodynamic
function for a cylinder and only depends upon the (oscil-
latory) Reynolds number Reω ¼ ðω0lx2Þ=4νg; T0 ¼
ðπ=4Þðρglx=ρrlzÞ with ρr being the density of the solid

[Fig. 3(c) lower inset]. For our gas experiments,
1=T0 ≳ 1000 ≫ ΓR, and thus 1=QgT0 ≈ ΓIðReωÞ. The
upper inset of Fig. 3(c) shows 1=QgT0 from representative
cantilevers with different parameters plotted against Reω;
the dashed line shows ΓIðReωÞ. In each case, a fitting
constant Qc with mean Q̄c ≈ 0.9� 0.2 is used [11]. The
data converge to the cylinder solution in the viscous regime.
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FIG. 3. (a) Dissipation vs p for two cantilevers with different
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and lx ≈ 32 μm, f0 ≈ 924 kHz) in N2. Transitions are deter-
mined by Knl ≈ 1 at pc ≈ 56 and 3.6 Torr, respectively. (b) Dis-
sipation for a nanocantilever (lx≈1300nm, f0 ≈ 28.6 MHz) and
a macroscopic quartz crystal (lx ∼ 5 mm, f0 ≈ 32.7 MHz [4]);
the transitions take place around 190 and 150 Torr, respectively.
(c) Collapse plot for all the data in different gases. The thick solid
line shows the scaling function f. The inset is a collapse of select
cantilever data based on the viscous cylinder solution. Squares
and diamonds correspond to microcantilevers (lx ≈ 32 μm)
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for a cylinder. The lower inset shows the parameters of the
model.
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We conclude that the scaling parameter for an arbitrary
time-dependent isothermal flow should be a function of
both Wi and Knl. We show that a generalized Knudsen
number in the form Wiþ Knl works well and can be
justified by Galilean invariance.
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