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We use highly resolved numerical simulations to study turbulent Rayleigh-Bénard convection
in a cell with sinusoidally rough upper and lower surfaces in two dimensions for Pr ¼ 1 and
Ra ¼ ½4 × 106; 3 × 109�. By varying the wavelength λ at a fixed amplitude, we find an optimal wavelength
λopt for which the Nusselt-Rayleigh scaling relation is ðNu − 1 ∝ Ra0.483Þ, maximizing the heat flux. This is
consistent with the upper bound of Goluskin and Doering [J. Fluid Mech. 804, 370 (2016)] who prove that
Nu can grow no faster than OðRa1=2Þ as Ra → ∞, and thus with the concept that roughness facilitates the
attainment of the so-called ultimate regime. Our data nearly achieve the largest growth rate permitted by the
bound. When λ ≪ λopt and λ ≫ λopt, the planar case is recovered, demonstrating how controlling the wall
geometry manipulates the interaction between the boundary layers and the core flow. Finally, for each Ra,
we choose the maximum Nu among all λ, thus optimizing over all λ, to find Nuopt − 1 ¼ 0.01 × Ra0.444.
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The ubiquity and importance of thermal convection in
many natural and man-made settings is well known [1–4].
The simplest scenario that has been used to study the
fundamental aspects of thermal convection is the Rayleigh-
Bénard system [5]. The flow in this system is governed by
three nondimensional parameters: (1) the Rayleigh number
Ra ¼ gαΔTH3=νκ, which is the ratio of buoyancy to
viscous forces, where g is the acceleration due to gravity,
α the thermal expansion coefficient of the fluid, ΔT the
temperature difference across a layer of fluid of depth H, ν
the kinematic viscosity (or momentum diffusivity), and κ
the thermal diffusivity, (2) the Prandtl number, Pr ¼ ν=κ,
and (3) the aspect ratio of the cell, Γ, defined as the ratio of
its width to height.
The primary aim of the corpus of studies of turbulent

Rayleigh-Bénard convection has been to determine the
Nusselt number Nu, defined as the ratio of total heat flux to
conductive heat flux [Eq. (1)], as a function of the three
governing parameters, viz., Nu ¼ NuðRa;Pr;ΓÞ. For
Ra ≫ 1 and fixed Pr and Γ, this relation is usually sought
in the form of a power law: Nu ¼ AðPr;ΓÞRaβ, where β
holds fundamental significance for the mechanisms under-
lying the transport of heat.
The classical theory of Priestley [6], Malkus [7], and

Howard [8] is based on the argument that as Ra → ∞, the
dimensional heat flux should become independent of the
depth of the cell, resulting in β ¼ 1=3. A consequence of
this scaling is that the conductive boundary layers (BLs) at
the upper and lower surfaces, which are separated by a
well-mixed interior, do not interact.
However, Kraichnan [9] reasoned that for extremely large

Ra, the BLs undergo a transition leading to the generation of
smaller scales near the boundaries that increase the system’s

efficiency in transporting the heat, predicting that
Nu ∼ ½Ra=ðln RaÞ3�1=2. In this, “Kraichnan-Spiegel” or “ulti-
mate regime” (β ¼ 1=2), it is argued that the heat flux
becomes independent of themolecular properties of the fluid
(e.g., [10,11]). Experimental [12–15] and numerical [16–18]
studies have found β ≈ 1=3. Chavanne et al. [19] and
He et al. [20] have reported observing transitions to β ¼
0.39 and β ¼ 0.38 in their respective experiments, and these
findings continue to stimulate discussion [21,22]. Motivated
by studies of shear flow, Borue and Orszag [23] used
pseudospectral methods at three resolutions (643, 1283,
2563 and hence, values of Ra) to study “homogeneous”
convection in which the BLs are effectively removed.Whilst
the highest resolution was not numerically converged, the
other two resolutions led to a range of β ¼ 0.40� 0.05. This
idea was later used in Lattice Boltzmann simulations for
Ra ¼ ½8.64 × 105; 1.38 × 107� to find β ¼ 0.51� 0.06 [24],
ascribing this to the ultimate regime.
Recently, Waleffe et al. [25] and Sondak et al. [26]

numerically computed the steady solutions to the
Oberbeck-Boussinesq equations for Ra ≤ 109 and 1 ≤
Pr ≤ 100 in two dimensions. By fixing Ra and Pr, steady
solutions for different horizontal wave numbers α were
computed. The solution that maximized heat transport,
Nu≡ Nuopt, was called optimal, for which α≡ αopt and
Nuopt − 1 ¼ 0.115 × Ra0.31, which is in agreement with
experiments [12]. Although they found that β was inde-
pendent of Pr, the Prandtl number did have considerable
effect on the geometry of the coherent structures that
transported heat. For Pr > 7, the scaling for the optimal
wave number was found to be αopt ¼ 0.257 × Ra0.256. The
horizontally averaged optimal temperature profiles had the

PRL 118, 074503 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

17 FEBRUARY 2017

0031-9007=17=118(7)=074503(5) 074503-1 © 2017 American Physical Society

http://dx.doi.org/10.1017/jfm.2016.528
http://dx.doi.org/10.1103/PhysRevLett.118.074503
http://dx.doi.org/10.1103/PhysRevLett.118.074503
http://dx.doi.org/10.1103/PhysRevLett.118.074503
http://dx.doi.org/10.1103/PhysRevLett.118.074503


following features: (a) the BLs were always unstably
stratified. (b) The core region was either stably (Pr ≤ 7)
or unstably (Pr > 7) stratified. (c) The transition regions
between the core and BLs were always stably stratified.
Thus, with small departures, these profiles correspond to
the marginally stable profile of Malkus [7], with β ¼ 1=3.
An important aspect emerging from the study of planar

Rayleigh-Bénard convection in two dimensions for Pr ≥ 1
is that the flow field [27] and the Nu-Ra scaling relations
[25,26,28] are similar to those in three dimensions. Thus,
this correspondence permits one to understand the proc-
esses driving the heat transport using well-resolved two-
dimensional simulations.
It is clear that the value β takes in the limit Ra → ∞

depends on the interaction between the BLs and the core
flow. To understand the role of BLs in thermal convection,
Shen et al. [29] introduced rough upper and lower surfaces
made of pyramidal elements in a cylindrical cell. They
found that these elements enhanced the production of
plumes, which were directly injected into the core flow,
leading to an increase in Nu. The increase in Nu was due to
an increase in the prefactor in the Nu–Ra scaling relation.
Whereas subsequent experiments found no effect of peri-
odic roughness on β [30–32], later studies confirmed that
the changes in the flow field brought about by surface
roughness do increase the value of β from the planar value
[33–39]. In our previous study, we used roughness to break
the top-bottom boundary layer symmetry and found that a
periodic upper surface with λopt ¼ 0.154 maximized the
heat transport, with β ¼ 0.359, for a smooth lower surface
in high resolution numerical simulations [40]. When λ ≪
λopt and λ ≫ λopt, the planar results were recovered, as is the
case with the present geometry. For each Ra, we determined
the maximum Nu among all λ, thereby optimizing over all
λ, to find Nuopt − 1 ¼ 0.058 × Ra0.334.
The first experiment designed to use roughness to reach

the ultimate regime at accessibleRawasmade byRoche et al.
[33], who used V-shaped grooves to cover the entire interior
of their cylindrical cell ofΓ ¼ 0.5. They observed a transition
in NuðRaÞ at Ra ≈ 2 × 1012 and that the data beyond the
point of transition could be fit with a power law with
β ¼ 0.51. A similar transition was observed at Ra ¼
7 × 109 in the simulations of Stringano et al. [35], who
used a cylindrical geometry with V-shaped grooves at the
upper and lower surfaces and imposed axisymmetry on the
flow. This artificial symmetry had two important effects on
the flow field: (1) the production and release of the plumes
from the roughness elements were in tandem, resulting in
larger plumes, and (2) the plumes traversed the vertical
distance without encountering a large scale circulation in the
interior region. Both of these effects resulted in an increase in
the efficiency of the heat transfer. As summarized by Ahlers
et al. [41], it was first noted by Niemela & Sreenivasan [13]
that the results of Roche et al. [33] can be understood as a
transition between a regime where the groove depth is less

than the BL thickness to a regime where the groove depth is
larger than the BL thickness. Ahlers et al. [41] state that
“Morework is needed to resolve this issue”. Here, we present
results from highly-resolved numerical simulations of
Rayleigh-Bénard convection in a cell with rough upper
and lower surfaces in two dimensions. The roughness
profiles chosen are sinusoidal. By keeping the amplitude
fixed and varying the wavelength of the rough surfaces, we
systematically study their effects on the heat transport.
The geometry and the dimensionless equations of motion

studied here are shown in Fig. 1. The aspect ratio of the cell,
Γ≡ Lx=Lz, is fixed at 2. The rough surfaces have a
wavelength λ≡ λ�=Lz and an amplitude h≡ h�=Lz. The
equations of motion for thermal convection are the
Oberbeck-Boussinesq (O-B) equations [5], and are non-
dimensionalized by choosing H ¼ Lz − 2h� as the length
scale and U0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gαΔTH
p

as the velocity scale. Hence, the
time scale is t0 ¼ H=U0. Here, uðx; tÞ ¼ (uðx; tÞ; wðx; tÞ)
is the velocity field, Tðx; tÞ is the temperature field, k is the
unit vector along the vertical, and pðx; tÞ is the pressure
field. No-slip and Dirichlet conditions for u and T are
imposed on the rough surfaces, and periodic conditions are
used in the horizontal direction.
The O-B equations were solved using the Lattice

Boltzmann method with separate distributions for the
momentum and temperature fields [42–46]. Our code
has been extensively tested against results from numerical
simulations for a wide range of different flows, and the
details of the validation can be found in [40,47].
For each of ten λ’s (see Fig. 2), we simulated over the

range Ra ¼ ½4 × 106; 3 × 109�. The planar wall case is
λ ¼ 0, and the amplitude of the roughness is fixed at h ¼
0.1 and Pr ¼ 1 for all simulations. We ran the simulations
for at least 143t0, where t0 is the turnover time, and
statistics were collected only after 100t0. The Nusselt
number was computed as

Nu ¼
½−κ ∂T

∂z þ wT�z¼ze

κΔT=H
; ð1Þ

where the overbar represents the horizontal and temporal
averages. We should note here that this definition of Nu, in

FIG. 1. The geometry of the rough surfaces and the equations of
motion for our two-dimensional rectangular cell with Γ ¼ 2.
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general, does not reduce to unity in the static case for
arbitrary roughness geometries [1]; however, for the sinus-
oidal geometries used here, this choice gives Nu ≈ 1 when
Ra ¼ 0. To give an example of the spatial resolutions in
the simulations, for λ ¼ 1 and Ra ¼ 2 × 109, the number
of grid points used are Nx ¼ 2800 and Nz ¼ 1400. Grid
independence was ascertained from simulations at
Ra ¼ 2 × 109 for λ ¼ 0.03 and 0.2 using two grids:
(a) Nx ¼ 2400, Nz ¼ 1200 and (b) Nx ¼ 2000,
Nz ¼ 1000. The difference between Nu computed at ze ¼
Lz=2 for the two grids was less than 1.2%. As an additional
check, Nu was computed at three different depths
ze ¼ Lz=4; Lz=2, and 3Lz=4; and the difference between
Nu at any two depths was less than 0.5%. More simulation
details are provided in the Supplemental Material [48].
For each λ, we obtained β from a linear least-squares fit

to the NuðRaÞ simulation data. Figure 2 shows β in the
scaling relation Nu − 1 ¼ A × Raβ as a function of λ. At the
optimal wavelength λopt ¼ 0.1, β attains a maximum value
of 0.483, which indicates that the influence of BLs on heat
transport has been minimized. It is clear that in the limits
λ ≪ λopt and λ ≫ λopt, the planar case is approached. The
Nu-Ra scaling relations for different λ are shown in
Fig. 3. The linear least-squares fit for λopt ¼ 0.1, giving
Nu − 1 ¼ 0.0042 × Ra0.483, is shown in Fig. 3(a). The
roughness elements are “submerged” inside the thermal
BLs for Ra < 108 (not shown), and hence, as seen in
Fig. 3(b), the values of Nu for these Ra are close to those for
larger λ. The increase in β for λ ¼ 0.1, relative to other λ, is
clear from Fig. 3(b). Figure 3(b) also shows the fit for
NuoptðRaÞ, which is obtained in the following manner: for
each Ra, we choose the maximum Nu among all λ,

effectively optimizing over all λ. These data are described
by Nuopt − 1 ¼ 0.01 × Ra0.444.
The flow field for the case of λopt ¼ 0.1 and Ra ¼

2 × 109 is shown in Fig. 4 where the following features are
apparent: 1. Two large convection rolls in the cell interior.
2. The “unstable” BLs at the upper and lower surfaces.
3. The production of plumes from the fluid moving along
the rough surfaces and their ejection from the tips of the
roughness elements. By varying λ, we have achieved a state
in which the interaction between the core flow and the BLs
over the roughness elements has been enhanced. This
results in an unstable state for the BLs, which then leads
to the generation and ejection of plumes from the roughness
tips. As noted above, in the case of a single rough wall, the

FIG. 2. The exponent in the scaling law Nu − 1 ¼ A × Raβ as a
function of roughness wavelength λ (here, we used λ ¼ 0.03,
0.05, 0.1, 0.154, 0.2, 0.286, 0.4, 0.5, 0.67 and 1.0.) Data from
simulations are the circles and the line is a fit using
β ¼ 0.54x1.17e−x þ 0.28, where x ¼ λ=λopt. At λopt ¼ 0.1, we
find a maximum βmax ¼ 0.483. For λ ¼ 1, β is slightly larger than
0.28 because of finite-size effects. See also Fig. 2 of the
Supplemental Material [48].

(a)

(b)

FIG. 3. Scaling relations for different λ. (a) Nu-Ra scaling
relations for λ ¼ λopt ¼ 0.1. The linear least-squares fit is
Nu − 1 ¼ 0.0043 × Ra0.482. The dash-dotted line is the scaling
fit Nu − 1 ¼ 0.034 × Ra0.359 for single rough wall of λ ¼ 0.154
[40]. (b) The (λ, β) pairs in the order of increasing slope are (1.0,
0.296), (0.5, 0.319), (0.286, 0.393), and (0.1, 0.482). The
remaining pairs [not shown in Fig. 3(b)] are (0.03, 0.375),
(0.05, 0.435), (0.154, 0.461), (0.2, 0.434), (0.4, 0.345), and
(0.67, 0.297). The black line is the upper envelope as described
by Nuopt − 1 ¼ 0.01 × Ra0.444. See also Figs. 1 and 2 of the
Supplemental Material [48].
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maximum value of β was found to be β ≈ 0.36 [40], but at a
slightly larger λ. This highlights the role played by the
second rough wall in further decreasing the role of the BLs
in transporting heat. We should note here that in spite of the
differences in geometry, our results have a correspondence
with those of Waleffe et al. [25] and Sondak et al. [26]
in that there is a length scale in each setting (λopt in ours
and 2π=αopt in theirs) that optimizes heat transport. The
optimization occurs through the manipulation of the
coherent structures that transport heat, though in detail it
is accomplished in different ways.
Our results are consistent with those of Goluskin &

Doering [1], who used the background method to compute
upper bounds [49] on Nu for R-B convection in a domain
with rough upper and lower surfaces that have square-
integrable gradients. They prove that Nu ≤ CRa1=2, where
C depends on the geometry of roughness. Our results show
that for the optimal wavelength, the heat transport is
Nu − 1 ¼ 0.0042 × Ra0.483, with the value of C being four
orders of magnitude larger than ours, but with an exponent
approaching their result. Importantly, their approach pro-
vides a key framework for exploring a range of amplitudes
and wavelengths using our methodology. Finally, our
findings demonstrate that the scaling of the ultimate regime
is nearly achieved in two dimensions using rough walls.
Roche et al. [33] interpreted their observation of β ¼ 1=2
as being due to a laminar to turbulent transition of the BLs.
Here, we interpret the ultimate state being achieved by the
enhanced BL–core flow interaction driven by the rough-
ness, which generates a larger number of intense plumes.
In summary, we have studied convection in a rectangular

cell of Γ ¼ 2 with rough upper and lower surfaces. At a
fixed roughness amplitude, varying the wavelength λ
results in a spectrum of exponents in the Nu-Ra scaling
relation. At λopt, the maximum exponent βmax ¼ 0.483 is

achieved, and in the limits λ ≪ λopt and λ ≫ λopt, the planar
value of β is recovered, which may underlie why certain
experiments found no effect of periodic roughness on β
[30–32]. The observation of βmax ≈ 0.5 here has been
facilitated by the use of very large amplitude roughness
relative to existing studies [33,35,38], indicating the prom-
ise of examining this state experimentally for more mod-
erate values of Ra than have been previously necessary.
Indeed, by varying both amplitude and wavelength over a
significant range, the systematic effects of the BLs, and
thus, the molecular properties of the fluid, may be realized,
comparing and contrasting the concept of a laminar-to-
turbulent BL transition, with the enhanced forcing asso-
ciated with unstable BL’s triggered by the roughness as
seen here.
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