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We theoretically study the propagation and storage of a classical field in a Λ-type atomic medium using
coherent population oscillations (CPOs). We show that the propagation eigenmodes strongly relate to the
different CPO modes of the system. Light storage in such modes is discussed by introducing a
“populariton” quantity, a mixture of populations and field, by analogy to the dark state polariton used
in the context of electromagnetically induced transparency light storage protocol. As experimentally
shown, this memory relies on populations and is then—by contrast with usual Raman coherence optical
storage protocols—robust to dephasing effects.
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The architectures proposed to implement optical quan-
tum information and communication protocols generally
rely on quantum memories, i.e., devices able to store
quantum states of light and retrieve them on demand with
high fidelity and efficiency [1]. Within the last decade,
much effort has been put towards their implementation in
solid-state systems, ion, or neutral atomic ensembles. In
this context, Λ-type three-level atomic systems have
received particular attention since the coherence between
the ground states may have a long lifetime and can, thus, be
used for storage [2,3]. In gas cells, high efficiencies were
obtained in alkali-metal atoms [4] using electromagneti-
cally induced transparency (EIT) close to [5] or far off
optical resonance [6], gradient echo memories [7], or four-
wave mixing [8]. Since all these methods are based on the
excitation of the Raman coherence between the lower states
of the system, they are sensitive to decoherence effects.
Recently, it was experimentally shown that coherent
population oscillations (CPOs) can be used as a storage
medium for light. Experimental demonstrations were
performed using metastable helium (He*) vapor at room
temperature [9], as well as in cold and warm cesium
[10,11]. CPOs occur in a two-level system when two
detuned coherent electric fields of different amplitudes
drive the same transition. When the detuning between
the fields is smaller than the decay rate of the upper
level, the dynamics of the saturation opens a transparency
window in the absorption profile of the weak field
[12–14]. The CPO resonance width may be decreased
when the upper level decays to a long-lived shelving
state, leading to an ultranarrow CPO resonance and a
memory behavior [15]. Another option is to use a Λ-system
where two CPOs may occur in opposite phase on the
two transitions, leading to a global CPO between the
two lower states [16]. This implies an ultranarrow
transmission resonance for the weak field broadened by
the ground states’ decay rate, which can be used for

storage [9–11]. Since it involves only populations,
CPO-based light storage protocol is robust to dephasing
effects, by contrast with the EIT-based protocol which
involves Raman coherence. In this Letter, we theoretically
explore the Λ-system option. First, we study the propaga-
tion of a weak signal field in the medium. We identify
eigenmodes of propagation, compute their group velocities
and transmission coefficients, and show that they relate to
different CPO modes. Then, we introduce a new quantity
that we call “populariton,” by analogy to the dark state
polariton (DSP) put forward in EIT-storage protocols [17],
which allows us to qualitatively understand CPO-based
light storage sequence.
We consider a Λ-system similar to the one which was

used to experimentally demonstrate CPO-based light
storage, i.e., He* at room temperature [9], shown on
Fig. 1(a). Two ground-states Zeeman sublevels j�1i couple
to the same excited level j0i via σ∓-polarized transitions,
respectively. Γ0 denotes the total spontaneous decay rate
from the excited state and Γð≫Γ0Þ is the common value of
the decay rates of the optical coherences ρ0;�1. Atomic
motion in the vapor cell results in a transit-induced
population loss affecting all states with the same rate
γtð≪Γ0;ΓÞ and a transit-induced population feeding of
rate γt=2 for both ground states [see Fig. 1(b)].
An intense linearly polarized driving field ED ¼

EDe−iω0ðt−z=cÞe∥ þ c:c. and a weak linearly polarized signal
field E ¼ EðtÞe−iω0ðt−z=cÞuþ c:c: are simultaneously sent
onto the system. The driving field resonantly excites the
optical transition and ED is real positive. The spectrum of
the weak time-dependent signal field jEðtÞj ≪ jEDj is
assumed to be contained within the driving-field-induced
saturation-broadened linewidth of the CPO resonance.
The angle α is defined by e∥ · u ¼ cos α [see Fig. 1(b)],
so that the fields in the circular polarization basis e� ≡
ðe∥ � ie⊥Þ=
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� e−iα
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�
fσþ;σ−g

e−iω0ðt−z=cÞ þ c:c: ð2Þ

A static magnetic field is applied along the propagation axis
to Zeeman shift the ground states by 2Δz, larger than the
saturation-broadened linewidth of the EIT resonances.
Thus, Raman coherent processes between jþ1i and j−1i
can be discarded, and the corresponding coherence will be
neglected, i.e., ρ1−1 ≈ 0.
Let us start with a qualitative discussion of the phenom-

ena at work in the system. First, we consider the behavior of
a single atom subject to the resonant driving field and a
detuned signal field at (ω0 þ δ), typically used in CPO
experiments [see Fig. 1(c)]. The total intensities I� of the
σ� components, which drive the j∓1i ↔ jei transitions,
respectively, are modulated at frequency δ. The atom,
therefore, undergoes simultaneous CPOs on the two arms
of the Λ system. In particular, when α ¼ 0, i.e., the two
fields have the same polarization, Iþ and I− oscillate in

phase, and the two CPOs combine, leading to a global CPO
between both lower states and the upper one, damped with
the rate Γ0. Conversely, when α ¼ π=2, i.e., the fields have
orthogonal polarizations, Iþ and I− oscillate in opposite
phase, and the two CPOs are now in antiphase, yielding to
an effective CPO between the two ground states, while the
upper state population remains constant [16]. Thus, this
CPO is damped by the ground-state decay with the rate
γtð≪Γ0Þ. The optical response of the whole medium results
from the superposition of the individual nonlinear behav-
iors of all the atoms interacting with the fields; the driving
field gets absorbed and a weak so-called idler field at
frequency (ω0 − δ), symmetric of the input signal fre-
quency with respect to ω0, appears [see Fig. 1(c)] [12].
Therefore, the output signal field—superposition of the
distorted input signal and the generated idler field—
strongly differs from the input one. In the next paragraphs,
we look for the propagation eigenfields, i.e., the signal
fields which conserve their polarization and spectrum
throughout propagation. We show that such fields are
strongly related to the CPO modes discussed in this
paragraph and, in particular, have a symmetric spectrum
centered at ω0. Moreover, we establish the analytic
expressions of their transmission coefficients and group
velocities.
We describe the dynamics of the system by the set of

Maxwell-Bloch equations perturbatively expanded with
respect to the signal field, in the usual slowly varying
envelope approximation for the fields, and rotating wave
approximation (RWA) for the atomic variables expressed in
the frame rotating at ω0. The zeroth order is described by
the following steady-state equations:

∂zΩ�
DðzÞ ¼ iη~ρð0Þe∓1ðzÞ; ð3Þ

0 ¼ ½Ĥ0; ρð0ÞðzÞ� þDðρð0ÞðzÞÞ; ð4Þ

where the unperturbed Hamiltonian of the atomic system
Ĥ0 includes the internal level structure and interaction with
the driving field, Ω�

D denote the Rabi frequencies of the
σ� components of the driving field, ~ρð0Þe�1 denote the zeroth-
order steady-state optical coherences, η is the atom field
coupling coefficient and D is the operator accounting
for spontaneous emission, dephasing, transit losses, and
feeding [18].
At first order, the density matrix ρð1Þ obeys

iℏ∂tρ
ð1Þ ¼ ½Ĥ0; ρð1Þ� þ ½Ĥ; ρð0Þ� þDðρð1ÞÞ; ð5Þ

where Ω� denote the Rabi frequencies of the σ� compo-
nents of the signal field, Ĥ is the RWA Hamiltonian
describing the interaction with the signal field. Since we
assumed a slowly varying signal field amplitude EðtÞ—the
spectrum of which is included in the saturation-broadened
linewidth of the CPO resonance—first-order quantities in

(a)

(b)

(c)

FIG. 1. (a) The Λ system of interest. The two circularly
polarized transitions are characterized by the same population
(optical coherence) decay rate Γ0=2 (Γ). Atomic thermal motion
of results in a transit-population loss of rate γtð≪Γ0;ΓÞ for the
three states, while the two ground states are fed with the same rate
γt=2. The system is coupled to the coherent superposition of two
linearly polarized fields, respectively, along fe∥;ug. A magnetic
field B Zeeman shifts the two ground states by 2Δz. (b) The
incident fields propagate along z in the medium. Atoms in the cell
interact with the fields within a volume represented in light color,
symbolizing the spatial extension of the beams. (c) Spectrum of
the resonant driving field (ω0) and an example of detuned signal
field at (ω0 þ δ). The spectrum of the signal is assumed to be
contained within the saturation-broadened linewidth of the CPO
resonance, limited by dashed vertical lines. In that case, an idler
field at (ω0 − δ) is generated along propagation.
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Eq. (5) can be adiabatically expanded at first order in ∂t.
We qualitatively explained above that the weak signal
field makes atoms undergo two CPOs on each arm of the
system, which can combine either in phase (α ¼ 0) or in
opposite phase (α ¼ π=2). In the former case (symmetric
CPO mode), the first-order ground-state populations are

always equal, thus, ρð1ÞΔ ≡ ρð1Þ11 − ρð1Þ−1−1 ¼ 0 while ρð1ÞΣ ≡
ρð1Þ11 þ ρð1Þ−1−1 ≠ 0. In the latter case (antisymmetric CPO

mode), we conversely have ρð1ÞΔ ≠ 0 and ρð1ÞΣ ¼ 0. In the
generic case, Eqs. (4) and (5) yield

ρð1ÞΔ ¼ −2βΔ
ð1þ sÞ

�
1þ

�
1

2Γ
−

βΔΓ
jΩDj2

�
∂t

�
ℑm½Ω⊥�
jΩDj

; ð6Þ

ρð1ÞΣ ¼ −2βΣ
3ð1þ sÞ

�
1þ

�
1

2Γ
−

βΣΓ
3jΩDj2

�
∂t

�
ℜe½Ω∥�
jΩDj

; ð7Þ

where we introduced the signal field Rabi frequencies
components in the (e∥; e⊥) basis Ω∥ ≡ ½Ωþ þΩ−�= ffiffiffi

2
p

and Ω⊥ ≡ ½Ωþ −Ω−�=i ffiffiffi
2

p
[Fig. 1(b)], ΩD is the total

Rabi frequency of the driving field, s≡ 3jΩDj2=Γ0Γ is
the saturation parameter of the transitions and the
coefficients βΔ ≡ s=ð3γt=Γ0 þ sÞ, βΣ ≡ s=ð1þ sÞ verify
0 ≤ βΔ;Σ ≤ 1. The signal field component Ω⊥ (Ω∥), hence,
plays the role of a source term for the population difference

ρð1ÞΔ (sum ρð1ÞΣ ). We note that, as the Raman coherence
follows the signal field excitation in an EIT configuration
[17], here, the sum and difference of the ground-state
populations follow the specific quadratures Q⊥ ≡ ℑm½Ω⊥�
and P∥ ≡ℜe½Ω∥� of the signal field, respectively. The
complete description of the signal field requires the extra
two quadratures Q∥ ≡ ℑm½Ω∥� and P⊥ ≡ℜe½Ω⊥� that we
formally gather with the previous ones in the vector
S ¼ ðP⊥; P∥; Q⊥; Q∥ÞT. To determine how S propagates,
we Fourier transform (FT) the propagation equation for the
first-order field

ðc∂z þ iωÞΩ�ðz;ωÞ ¼ icη~ρð1Þe∓1ðz;ωÞ; ð8Þ
as well as Eq. (5). Performing a first-order expansion in
ω—corresponding to first-order adiabatic expansion in
∂t—we get [18]

FT½Sðz; tÞ�ðωÞ ¼ e
R

z

0
T ðξÞdξ × FT½Sð0; tÞ�ðωÞ; ð9Þ

where T ðzÞ is the diagonal transfer matrix

T ðzÞ ¼ −gIþ

0
BBBBB@

i ω
v1

0 0 0

0 2βΣgþ i ω
v2

0 0

0 0 2βΔgþ i ω
v3

0

0 0 0 i ω
v1

1
CCCCCA
;

ð10Þ

g ¼ η=2Γð1þ sÞ is the absorption coefficient of the system
saturated by the driving field and vi’s are group velocities

v1 ¼
c

1 − cη
2Γ2

1
1þs

;

v2 ¼
c

1þ cη
2Γ2

1
1þs ½2β2Σ Γ

sΓ0
− βΣ − 1� ;

v3 ¼
c

1þ cη
2Γ2

1
1þs ½6β2Δ Γ

sΓ0
− βΔ − 1� :

Figure 2 displays the group velocities, transmission
coefficients, and βΔ;Σ coefficients as functions of the
saturation parameter s, obtained with He* parameters at
room temperature taken from [9], i.e., j � 1i≡ j23S1;
mJ ¼ �1i, j0i≡ j23P1; mJ ¼ 0i, Γ=Γ0 ∼ 5 × 102,
γt=Γ0 ∼ 10−2, ηc=2Γ2 ∼ 1. Here, the optical coherence
decay rate Γ is replaced by the Doppler width [19,20].
One roughly observes three different regimes. When
s > 100, atoms are completely saturated by the driving
field and the signal field propagates as in a vacuum. By

(a)

(b)

FIG. 2. Group velocities (a) and transmission coefficients
(b) of the eigenquadratures as functions of the saturation
parameter s, for He* parameters taken from [9]. The inset shows
the βΔ;Σ parameters as functions of s. The quadratures P⊥ and
Q∥—which do not explicitly couple to the CPO modes—always
experience absorption and propagate at a supraluminal group
velocity. By contrast, the quadrature Q⊥ (P∥) which couples to
the antisymmetric (symmetric) CPO mode experiences a strongly
reduced group velocity and amplification in the regime 3γt=Γ0 ∼
0.01 < s < 100 (1 < s < 100). Above, the signal cannot interact
with the over-saturated atomic system. Below, the states’ decay
(βΣ;Δ ≃ 0) does not allow for CPO.
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contrast, when s < 0.01, the linear absorption regime
(βΔ;Σ ≈ 0) does not allow for CPO, the signal field then
merely experiences absorption. In between, the propagation
features of the signal field strongly depend on the driving
field intensity. In particular, the quadratures Q⊥ and P∥,
which explicitly couple to the CPO modes via Eqs. (6)
and (7), are amplified and propagate at a strongly reduced
group velocity. By contrast, P⊥ and Q∥, which do not
explicitly couple to CPOmodes, always experience absorp-
tion and a supraluminal group velocity.
From Eqs. (9) and (10), we deduce that the input signal S

is an eigenmode provided that it has a single nonvanishing
quadrature in the basis (e∥; e⊥); a propagation eigenmode is
linearly polarized along e∥ (α ¼ 0) or e⊥ (α ¼ π=2), and its
Rabi frequency is either real or imaginary, which implies its
spectrum must be symmetric with respect to ω0.
Now, let us consider the specific case of an eigen-

field polarized along e⊥ characterized by Sð0; tÞ ¼
ð 0 0 ΩðtÞ 0 Þ T, which propagates with the group
velocity v3 and couples to the ground-state population
difference (antisymmetric CPO mode). We consider a
typical three-step sequence, used for EIT of CPO storage.
The plots displayed in Fig. 3 result from the complete
nonperturbative numerical simulation of Maxwell-Bloch

equations with He* parameters taken from [9], in a 6 cm-
long cell, with s≃ 0.1 so that βΔ ¼ 1 and βΣ ¼ 0. Initially,
the driving field is on, and the signal field slowly increases.
The saturation parameter is chosen such that v3 ≪ c in
order to compress the signal field envelope in the medium.
At t ¼ 6 μs, the fields are then abruptly switched off. After
an arbitrary storage time (here, 2 μs), the driving field is
switched on again and a retrieved pulse exits the cell.
In the sameway as the quadratureQ⊥ is a source term for

the population difference ρð1ÞΔ in Eq. (6), ρð1ÞΔ conversely
appears as a driving term in the following propagation
equation of Q⊥:

ðc∂z þ ∂t − cgÞQ⊥ ¼ −
ηc

2jΩDj
∂tρ

ð1Þ
Δ : ð11Þ

These relations are reminiscent of those one can write for
the Raman coherence and the field in an EIT configuration.
Thus, by analogy with the DSP picture [17], we define a
new quantity, superposition of the quadrature Q⊥, and the
population difference ρð1ÞΔ , the populariton

P ¼ cosðΘÞQ⊥ −
ffiffiffiffiffi
ηc
8

r
sinðΘÞρð1ÞΔ ; ð12Þ

with the mixing angle Θ defined by tanΘ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηc=2jΩDj2

p
,

controlled by the driving field intensity. This quantity has
light and matter components during the writing and
retrieval steps (0 < Θ < π=2), but is exclusively in the
form of the difference of populations during the storage
step (Θ ¼ π=2). Using Eqs. (6), (11), and (12), one can
show that cosðΘÞP¼½1−sin2ðΘÞΓ=jΩDj2×∂t�Q⊥, and

sinðΘÞP¼−
ffiffiffiffiffiffiffiffiffiffi
ηc=8

p ½1þ cos2ðΘÞΓ=jΩDj2×∂t�ρð1ÞΔ , which,
together with Eq. (11) lead to the propagation equation for
the populariton

�
∂z þ

2 − cos4ðΘÞ
v3ðΘÞ

∂t

�
P ¼ g½1þ sin2ðΘÞ�P; ð13Þ

with the group velocity v3ðΘÞ=2 − cos4ðΘÞ and an ampli-
fication factor g½1þ sin2ðΘÞ�. The retrieval process can be
interpreted in the same way as in EIT protocols: when the
driving field is switched on again, after storage, P takes
back a signal field component, i.e., the retrieved signal
pulse. Moreover, the lifetime of the memory corresponds to
the lifetime of P during the storage step, i.e., the ground-
state-population difference, which decays at rate γt.
Since we considered the input signal spectrum to be

included within the CPO linewidth, the first-order adiabatic
restriction erases dispersive effects along propagation, and
rigorous optimization, such as in EIT protocols [4,21–24],
would require to go beyond this approximation. However,
as EIT occurs when the saturation broadening overcomes
the Raman decoherence [25], our adiabatic model
shows that CPO occurs when the saturation broadening

(a)

(b)

(c)

FIG. 3. Storage sequence. The input signal field—here at
frequency ω0—couples to the population difference via Q⊥.
Renormalized amplitudes of the signal and driving fields at the
entrance (a) and the exit (b) of the cell, and population difference
(c) at the exit of the cell, as functions of time. During the writing
step, the driving field is on, while the signal slowly increases with
a rising exponential shape. The shape of the signal is imprinted
on the population difference. Although the group velocity is
strongly reduced, one observes a leakage of the signal, which
was amplified in the cell. Suddenly, the fields are switched
off and the storage starts. During this period, the generated
population difference decays at rate γt. After a 2 μs storage time,
the driving field is switched on again and a retrieval pulse of
signal exits the cell.
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overcomes the ground-states decay (s > 3γt=Γ0). As for
EIT-based storage [24,25], optimal efficiencies are
expected for abrupt switching of the driving field and
moderate optical depth [18].
Above, we considered that the signal field is an eigen-

vector of the transfer matrix T . For an arbitrary linearly
polarized signal field with an arbitrary spectrum, the
populariton picture can still be used for the storage of
the Q⊥ quadrature of the distorted signal field. The same
kind of calculations and interpretation can actually be done
for the other CPO (i.e., symmetric) excitation mode,
characterized by the ground-states population sum ρð1ÞΣ ,
coupled to the quadrature P∥, with a lifetime Γ−1

0 . In that
case, the broader CPO linewidth allows for shorter input
signal pulses.
In this Letter, we studied the propagation of a weak

signal field in a Λ-type atomic medium resonantly driven
by a strong pump field. We identified four propagation
eigenmodes, two of which directly couple to the CPO
modes of the medium. To interpret CPO-based light storage
in such modes, we introduced the populariton, a mixture of
light and matter, which is an analogue of the DSP
introduced in [17] to interpret EIT-based memory. The
main advantage of the CPO-based memory described here,
as experimentally shown [9], is its robustness to dephasing
effects since it relies on populations. Our study applies
beyond He* warm vapor to any system, e.g., solid-state
[13] or cold atoms [10] where CPO was observed. Future
work will determine whether it can be used to simulta-
neously store both noncommuting quadratures of a light
field.
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