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We consider a spinless ultracold Fermi gas tightly trapped along the axis of an optical resonator and
transversely illuminated by a laser closely tuned to a resonator mode. At a certain threshold pump intensity,
the homogeneous gas density breaks a Z2 symmetry towards a spatially periodic order, which collectively
scatters pump photons into the cavity. We show that this known self-ordering transition also occurs for low
field seeking fermionic particles when the laser light is blue detuned to an atomic transition. The emergent
superradiant optical lattice in this case is homopolar and possesses two distinct dimerizations. Depending
on the spontaneously chosen dimerization, the resulting Bloch bands can have a nontrivial topological
structure characterized by a nonvanishing Zak phase. In the case where the Fermi momentum is close to
half of the cavity-mode wave number, a Peierls-like instability here creates a topological insulator with a
gap at the Fermi surface, which hosts a pair of edge states. The topological features of the system can be
nondestructively observed via the cavity output: the Zak phase of the bulk coincides with the relative phase
between laser and cavity field, while the fingerprint of edge states can be observed as additional broadening
in a well-defined frequency window of the cavity spectrum.
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Introduction.—The experimental progress in coupling
ultracold quantum gases to the electromagnetic field of
high-Q cavities [1–8] has opened a new avenue for creating
and exploring novel many-body collective phenomena in
the framework of cavity QED [9–16]. One hallmark effect
of the coupled atom-field dynamics is self-ordering, where
the atoms spontaneously break the translational symmetry
and form a spatial pattern, which maximizes collective (i.e.,
superradiant) scattering of the pump photons into the cavity
[1,5–7,17,18]. The interplay between light-induced long-
range interactions, the quantum statistics of the particles
[19–26], and short-range interatomic interactions [27–33]
gives rise to a wealth of intriguing phenomena. Corres-
ponding experiments have become successful quantum
simulators for Bose-Hubbard models with infinitely long-
range interactions demonstrating the Dicke superradiant
phase transition as well as a supersolid phase [34–36].
Recent theoretical developments have highlighted a

further possibility to exploit cavity fields to generate
artificial spin-orbit coupling [37–41] or dynamical gauge
fields [42–46], exploiting Raman processes involving a
cavity mode to induce internal transitions between two
atomic ground-state sublevels (pseudospins) [38,41] or
tunneling between two sites of a preexisting lattice
[42,43,45]. As a consequence, self-organized phases are
predicted to become topological when the artificial spin-
orbit coupling or the gauge field is mediated by the
superradiant cavity light [41–43].
In this Letter, we present a configuration leading to

topologically nontrivial self-ordered phases for spin-polar-
ized fermionic atoms in one dimension without artificial
spin-orbit coupling or gauge fields. We consider the same

experimental setup exploited to observe the superradiant
self-ordering transition of bosons [1,5–7], involving trans-
versely laser-driven atoms coupled to a single mode of an
optical resonator in the dispersive regime (see Fig. 1). The
motion of the atoms transverse to the cavity axis is frozen
by a cigar-shaped dipole trap [35]. The superradiant lattice
formed from the interference between the laser and the

FIG. 1. Schematic view of fermionic atoms trapped in a one-
dimensional elongated tube along the axis of an optical resonator
and driven by a transverse blue-detuned (Δa > 0 with respect to
an atomic transition g ↔ e) laser with Rabi frequency Ω. Δc
denotes detuning with respect to a standing-wave cavity mode.
The atoms are low field seekers trapped at the light intensity
minima generated by the interference of the cavity field and the
plane-wave transverse pump laser. The relative phase Δφ of the
cavity output and the pump laser corresponds to the Zak phase of
the lattice bands in real time (see Fig. 2). (Inset) The coupling of
momentum states via pump and cavity fields.
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cavity field is dimerized; i.e., the unit cell contains two
lattice sites. During self-ordering, the particles choose
between the two possible dimerizations in a spontaneous
Z2-symmetry breaking process. The nature of the dimer-
ized superradiant lattice qualitatively depends on the sign
of the laser-atom detuning Δa. For the conventional red
detuningΔa < 0, dimerization is heteropolar (i.e., there is a
finite energy offset between the two sites in the unit cell),
while, for blue detuning Δa > 0, on which we focus in the
following, it is homopolar (zero offset) [47]. The
dimerized-lattice bands can have a nontrivial topological
structure characterized by their Zak phase φZak, which is
the Berry’s phase picked up by moving adiabatically
through the entire first Brillouin zone [48]. In the homo-
polar (blue-detuned) case, φZak is Z2 quantized and can be
either 0 or π, depending on the (in our case spontaneously
chosen) dimerization.
Our model shares several features with the Su-Schrieffer-

Heeger (SSH) [49] and Holstein [50] models, describing
electrons coupled to lattice phonons. The role of the
phononic degrees of freedom is played in our scheme by
a single global cavity mode. Specifically, if the Fermi
momentum is close to half of the cavity-mode wave vector,
an energy gap opens at the Fermi surface of the dimerized
superradiant lattice [24]. For one of the two possible
dimerizations, the system enters a topological phase with
chiral symmetry, hosting a pair of edge states within the
energy gap in the finite system [51,52]. This mechanism is
analogous to the Peierls instability, whereby a one-
dimensional solid-state crystal spontaneously dimerizes into
an insulator due to the electron-phonon coupling [53]. This
aspect is absent in the free-space realization of the super-
lattice in Ref. [54], where the dimerized lattice is merely a
static optical potential without phononic degrees of freedom.
We also demonstrate how the signatures of the nontrivial

topology in our open system can be nondestructively read
out in real time simply by monitoring the cavity output. The
Zak phase directly appears as the relative phase Δφ
between the laser and the cavity field, which is an easily
accessible quantity [55]. In addition, in a finite system, the
edge states can be detected in the cavity spectrum since
their presence introduces additional broadening in a spe-
cific well-defined frequency window.
Model and approach.—Consider laser-driven ultracold

spin-polarized fermions in a standing-wave resonator
similar to the one shown in Fig. 1. The system is effectively
described by the Hamiltonian [10]

Ĥ ¼
Z

dxψ̂†
�
−
ℏ2

2m
d2

dx2
þ ℏη cosðkcxÞðâe−iφΩ þ H:c:Þ

þ U0cos2ðkcxÞâ†â
�
ψ̂ − ℏΔcâ†â; ð1Þ

where the atomic excited state has been adiabatically
eliminated (dispersive regime of a large Δa) and the atomic

motion is restricted to one dimension along the cavity axis
x. We assume plane-wave laser illumination and a standing-
wave cavity mode proportional to cosðkcxÞ with a wave
number kc. In Eq. (1) we introduced the optical potential
depth per photon U0 ≡ ℏg20=Δa equivalent to the cavity
frequency shift per atom, the effective pump strength
η≡ g0jΩj=Δa, the laser phase φΩ and the cavity detuning
with respect to the pump frequency Δc. Here, g0 and Ω
are the atom-cavity coupling and the single-photon Rabi
frequency, respectively, and H.c. stands for the Hermitian
conjugate. The recoil energy ER ≡ ℏ2k2c=2m and cavity
wave number kc are the natural units of energy and
momentum here. Finally, â is the cavity photon bosonic
annihilation operator and ψ̂ðxÞ is the atomic fermionic field
operator.
The Z2-symmetry transformation x → x� π=kc,

â → −â, â† → −â† leaves the Hamiltonian (1) invariant.
This symmetry is spontaneously broken at the self-ordering
transition where the cavity mode develops a finite coherent
amplitude α ¼ hâi ¼ jαj expðiφαÞ, and its phase is locked
to the laser phase φΩ by a Josephson-like energy term
EJðαÞ ∝ −Nη2ρjαj2 cos2ðΔφÞ, with ρ ¼ N=L being the
average atomic density [20]. EJ fixes the relative phase
Δφ ¼ φα − φΩ to being either 0 or π (see Fig. 2). In the
thermodynamic limit, N;L → ∞, ρ ¼ const, the super-
radiant phase is exactly described by a mean-field approach
where only the coherent field component α is retained and
satisfies the following self-consistent equations [20]:

FIG. 2. Spontaneous Z2-symmetry breaking at the superradiant
self-ordering transition in the configuration of Fig. 1 seen via the
modulus of coherent cavity-field amplitude (the solid line) as a
function of the pump strength η. The blue dashed line shows the
cavity phase Δφ relative to the driving laser, for which we have
either Δφ ¼ 0 or Δφ ¼ π depending on the lattice dimerization.
(Insets) Corresponding atomic densities (the black solid line) and
lattice potential (rescaled by 0.5, the blue solid line) within a unit
cell, for ℏη

ffiffiffiffi
N

p ¼ 1.55ER. Δφ coincides with the Zak phase φZak
of the lowest Bloch band. The gray-shaded area denotes an
unstable region of the system (see Fig. 3). Results are obtained
for spin-polarized fermions with the parameters kF ¼ kc=2,
kBT ¼ 0.01ER, ℏΔc ¼ 12ER, U0N ¼ 32.35ER.
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α ¼ 1

Δc

Z
dxρðxÞ ∂VslðxÞ

∂α� ;
Z

dxρðxÞ ¼ N; ð2Þ

with the superradiant lattice potential

VslðxÞ ¼ U0jαj2cos2ðkcxÞ þ 2ℏηjαj cosðΔφÞ cosðkcxÞ;
ð3Þ

and the atomic density

ρðxÞ ¼ hψ̂†ðxÞψ̂ðxÞi ¼
X
n

Z
BZ

dk
2π

nF½ϵnðkÞ�jψn;kðxÞj2:

ð4Þ

Here, nFðϵÞ ¼ f1þ exp½βðϵ − μÞ�g−1 is the Fermi-Dirac
distribution, and ϵnðkÞ and ψn;kðxÞ are, respectively, the
Bloch eigenenergies and the eigenstates of the single-
particle Hamiltonian with the superradiant lattice potential
VslðxÞ, whose periodicity 2π=kc defines the Brillouin zone
BZ ¼ ½−kc=2; kc=2�. The chemical potential is fixed by the
second equation in Eq. (2). We stress that the dependence
of ρðxÞ on α through the dynamical lattice VslðxÞ requires a
self-consistent solution for α and μ in Eq. (2).
Dealing with an open system, one should, in principle,

include photon losses at the rate κ out of the cavity [9].
However, the induced heating rates of the Fermi gas are
ineffective up to long time scales proportional to the atom
number N, as shown in Ref. [25]. Within the superradiant
phase, the photon losses introduce damping of the
coherent-field amplitude, which follows the momentary
atomic distribution with a phase shift that can be made
vanishingly small for Δc ≫ κ [55]. Even though the super-
radiant self-ordering transition becomes dissipative [56,57],
the Z2 nature of the symmetry breaking is not affected.
Emergent dimerized superradiant lattice.—The solution

of Eq. (2) is shown in Fig. 2. Above a critical pump strength
(see also Fig. 3), the coherent part of the cavity field α
grows monotonically, with its relative phase Δφ locked at
either 0 or π, breaking the Z2 symmetry. The two cases
correspond to two possible lattice dimerizations, as shown
by Eq. (3) and in the inset of Fig. 2 within one unit cell.
The one-dimensional bands can be characterized by the

Zak phase [48,58],

φðnÞ
Zak ¼ kc

Z
BZ

dk
Z

2π=kc

0

dxu�n;kðxÞ
∂un;kðxÞ

∂k ¼n¼1Δφ; ð5Þ

where un;kðxÞ ¼ expð−ikxÞψn;kðxÞ is the periodic part of
the Bloch wave function. The Zak phase is, in general, not
quantized, and it can take any value between zero and 2π.
That said, in the presence of chiral symmetry (as for the
blue-detuned, homopolar lattice considered here), it is Z2

quantized and can assume solely the values 0 or π. The Zak
phase φZak of the lowest Bloch band n ¼ 1 coincides with

the relative phase of the cavity Δφ, as indicated in the last
equality of Eq. (5), in the case of a mirror symmetric choice
for the unit cell (see the inset of Fig. 2). The mirror
symmetric choice of the unit cell, though not a unique
choice [54,59], corresponds to the Wigner-Seitz cell, and
the Zak phase can then be interpreted as a topological
invariant. The nonvanishing Zak phase φZak ¼ π indeed
signals a nontrivial topological band, which hosts localized
zero-dimensional edge states in a finite system. This is
illustrated in the inset of Fig. 4, showing the low-lying
energy spectrum of a finite lattice consisting of 50 unit cells
of the topologically nontrivial dimerization. A smooth
polynomial wall potential VwallðxÞ ¼ V0ðx2 þ x4 þ x6Þ is
added to both ends of the finite lattice, with V0=ER ¼ 150.
The two isolated eigenenergies in the midgap correspond to
the two localized edge states. They are quite robust with
respect to variation of the wall potential in the range
V0=ER ∼ 1 − 104. However, they lie around midgap only
for V0=ER ∼ 102.
Measuring topological invariants directly is often chal-

lenging and requires nonlocal probes, as, for instance, the
Bloch-Ramsey interferometric technique employed to mea-
sure the Zak phase with ultracold atoms in a superlattice
[54]. In our setup, where the lattice (3) is formed through
the interference between the laser and the superradiant
cavity field, φZak can be continuously and nondestructively
read out as the relative phase Δφ between the pump and
cavity fields, as is schematically depicted in Fig. 1.
Topological insulator.—Figure 3 shows the phase dia-

gram in the parameter space of the effective pump strength

FIG. 3. Phase diagram in the η − kF plane. For a strong enough
pump η (above the blue line), the system self-orders into a
superradiant pattern. In the self-ordered phase, the system is in
either a SRM phase or an insulator state. The superradiant
insulating phase, in turn, is either a SRBI or a SRTI, characterized
by their Zak phases (see Fig. 2). At the half filling kF ¼ kc=2, we
have a direct phase transition between the uniform Fermi gas and
the SRBI or SRTI. Otherwise, this phase transition occurs only
through the SRM phase. For an even stronger drive (above the red
line) the self-ordered phase becomes unstable. The parameters are
the same as in Fig. 2.
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ℏη
ffiffiffiffi
N

p
=ER versus the Fermi momentum kF=kc. For den-

sities around the half filling kF ¼ kc=2, with kF ¼ πρ, the
superradiant phase corresponds to an insulator, while
sufficiently away from this point the system is found in
a superradiant metallic (SRM) phase. The dashed lines in
Fig. 3 indicate the continuous crossover from the metallic
to the insulating phase. The transition to an insulator within
a dimerized lattice at half filling follows the same mecha-
nism underlying the Peierls instability in one-dimensional
electron-phonon models [49,53]. The critical pump
strength for the superradiant transition vanishes at T ¼ 0,
as noted previously for red-detuned superradiant lattices
[22–24]. The superradiant insulating phase has a band gap
Δ that is proportional to the absolute value of the cavity-
field amplitude jαj. The superradiant insulator phase can be
either a (topologically trivial) band insulator (SRBI) for
Δφ ¼ 0 or a topological insulator (SRTI) for Δφ ¼ π. For
the latter case, the lattice bands host a pair of edge states in
the finite system, as discussed above. The SRTI possesses
chiral (or sublattice) symmetry [60] and belongs to the AIII
class introduced in Ref. [52]. In the tight-binding limit,
particle-hole and time-reversal symmetries are additionally
present, putting the SRTI in the BDI class of Ref. [52], i.e.,
in the same class as the SSH model.
Increasing the pump amplitude η further, the system

reaches a second transition point where no stable solutions
of Eq. (2) can be found anymore, as indicated by the gray-
shaded areas in Figs. 2 and 3. This instability is caused by

the competition between the ∝ cosðkcxÞ and the
∝ cos2ðkcxÞ contribution to the superradiant lattice poten-
tial in Eq. (3) and is characteristic of the blue-detuned
homopolar lattice. As shown in Ref. [47], this instability
can correspond to the onset of the limit cycle and even
chaotic behavior.
Detecting edge states.—As described above, in a finite

system, the SRTI phase possesses a pair of topological edge
states within the band gap, which can be directly observed
in the spectral properties of the cavity output. This can be
verified by computing the optical polarizability χðωÞ of the
SRTI in the finite system. χðωÞ corresponds to the dynamic
response function of the medium with respect to density
perturbations induced by cavity photons and reads [61]

χðωÞ ¼
X
l;l0

nFðϵlÞ − nFðϵl0 Þ
ℏωþ ϵl − ϵl0 þ i0þ

����
Z

dxψ�
l
∂VslðxÞ
∂α� ψl0

����
2

;

ð6Þ

where ϵl and ψlðxÞ are the eigenenergies and eigenstates of
the single-particle Hamiltonian with the potential
VslðxÞ þ VwallðxÞ. The real (imaginary) part of χ corre-
sponds to the atomic dispersion (absorption) with respect to
the propagation of cavity photons.
Using the identity Im½1=ðℏωþ ϵl − ϵl0 þ i0þÞ� ¼

−πδðℏωþ ϵl − ϵl0 Þ, one can see that the medium absorbs
photons only if energy is conserved in the transition
between two eigenstates (one of which must be occupied)
having a finite matrix element with respect to the operator
∂Vsl=∂α�. In the absence of edge states, the Fermi medium
absorbs cavity photons only for frequencies ℏω ≥ Δ, where
Δ is the energy gap between low-lying filled valence states
and upper empty conduction states (see the inset in Fig. 4)
and is assumed to be much larger than the temperature,
kBT ≪ Δ. On the other hand, when edge states are present
in the middle of the gap, the medium can absorb photons
with even lower energy: ℏω ≥ Δ=2. This holds as long as
the matrix element is nonvanishing. By increasing the
length of the system L, the edge-state contribution
χed→2ðωÞ to the total response function χðωÞ decreases
like 1=L in the thermodynamic limit N=L ¼ const, where
also U0 ∝ 1=L and η ∝ 1=

ffiffiffiffi
L

p
. The edge states indeed

contribute to absorption only locally.
Figure 4 shows the imaginary part of χðωÞ. The blue

(red) dashed curve indicates χ1→2 (χed→2), the contribution
of transitions from filled lowest valence (edge) states into
upper empty conduction states. It is evident that the
presence of edge states in the SRTI phase drastically
modifies the polarization function and opens an additional
absorption channel in the well-defined frequency range
Δ=2 ≤ ℏω ≤ Δ=2þ δ2, with δ2 being the conduction
bandwidth. We note that, for δ2 < Δ=2, this additional
absorption window becomes even fully separated from the
one related to transitions between valence and conduction

FIG. 4. Signature of the edge states in the absorption spectrum
of the SRTI phase with respect to the propagation of cavity
photons. The imaginary part of the polarization [Eq. (6)] as a
function of frequency is shown for a finite system encompassing
50 unit cells at half filling. The total absorption χ (the black solid
line) has two contributions: χed→2 (the red dashed line) is due to
the presence of edge states, while χ1→2 (the blue dashed line) is
present also without edge states. (Inset) The atomic energy
spectrum, where filled (empty) circles indicate occupied (empty)
states. The two isolated eigenenergies in the midgap correspond
to the two localized edge states. The parameters are the same as in
Fig. 2, with ℏη

ffiffiffiffi
N

p ¼ 1.55ER.
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states. This provides experimental means to detect edge
states via a nondestructive measurement since the absorp-
tion Im½χðωÞ� influences the broadening of the cavity
resonance and can, for instance, be extracted from the
width of the peak of the incoherent fluorescence spectrum
or probe-transmission spectrum [25]. The bad-cavity
regime (i.e., the large photon-loss rates κ) can be optimal
since all of the spectral weight is then concentrated around
an almost purely atomic resonance located at low frequen-
cies, whose width is approximately given by the atomic
absorption Im½χ� plus a small correction inversely propor-
tional to κ [25].
Conclusions.—We introduced and characterized a simple

configuration of fermionic atoms trapped along the axis of
an optical cavity to implement a genuine topological self-
organized superradiant state. The proposed setup is already
experimentally available. Remarkably, the configuration
features built-in nondestructive monitoring tool via the
cavity output photons, which allows us to directly probe
topological properties of the system like the Zak phase and
the existence of the edge states. This could, for instance,
allow us to directly verify the topological bulk-boundary
correspondence. This would require us to measure both the
Zak phase and the spectral signature of edge states within a
single experimental realization, which is impossible with
destructive measurements.
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