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We demonstrate that the quantum phase transition (QPT) of the Rabi model and critical dynamics near
the QPT can be probed in the setup of a single trapped ion. We first demonstrate that there exists
equilibrium and nonequilibrium scaling functions of the Rabi model by finding a proper rescaling of the
system parameters and observables, and show that those scaling functions are representative of the
universality class to which the Rabi model belongs. We then propose a scheme that can faithfully realize
the Rabi model in the limit of a large ratio of the effective atomic transition frequency to the oscillator
frequency using a single trapped ion and, therefore, the QPT. It is demonstrated that the predicted universal
functions can indeed be observed based on our scheme. Finally, the effects of realistic noise sources on
probing the universal functions in experiments are examined.
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Introduction.—The experimental realization of quantum
phase transition (QPT) in a well-controlled quantum system
is of considerable interest [1–9]. This is particularly
important for the study of the dynamics of QPT where a
controlled change of the system parameters is necessary
[10–12]. Understanding the dynamics of QPT is at the
frontier of the study of critical phenomena; the full extent of
the universality in nonequilibrium dynamics of a system
that undergoes a QPT remains to be determined [13,14]
and its theoretical underpinnings are being actively
investigated [15–20].
Trapped ions are a particularly promising platform for

this purpose thanks to the possibility of precise coherent
quantum control and high-fidelity measurements [3–5], as
exemplified by the recent observation of the dynamics of
classical phase transitions [21,22]. A major challenge,
however, lies in the fact that the QPT typically occurs in
a thermodynamic limit where the number of system
constituents diverges [23]. Although the universality man-
ifests itself even for a system of finite size in the form of
finite-size scaling relations [24–26], it emerges only when
the system size is sufficiently large; moreover, a controlled
change in the system size under otherwise unchanged
conditions is necessary in order to observe the critical
exponents. In this respect, and despite the advances in
trapped-ion technologies, it is still a formidable challenge
to scale up the system size sufficiently to observe critical
phenomena while maintaining the controllability and the
coherence [5].
Recently, it has been shown in Refs. [20,27] that even a

single two-level atom coupled to a harmonic oscillator may
undergo a second-order QPT. The experimental realization
of such a finite-system QPT is highly desirable, as it opens
a possibility to study the dynamics of QPT in a small, fully
controlled quantum system with a high degree of coherence

without the necessity of scaling the number of system
components. However, the required parameter regime
[20,27] that includes simultaneously extremely large detun-
ing [28–30] and large coupling strength [31–33] has made
it difficult to find a suitable experimental platform to realize
the finite-system QPT.
In this Letter, we demonstrate that the QPT of the Rabi

model as well as its dynamics can be experimentally
observed with a single trapped ion whose electronic and
vibrational degrees of freedom can be controlled by
external radiation. We first demonstrate the existence of
a scaling function for the atomic population of the ground
state and a nonequilibrium scaling function for the adia-
batic dynamics that goes beyond a power-law behavior
predicted by the Kibble-Zurek mechanism [10–12,20]. The
universality of equilibrium and nonequilibrium scaling
functions [17,34] found here is demonstrated by showing
that the Dicke model also leads to the identical scaling
functions. This result not only corroborates the observation
[20] that the Rabi, Dicke [35–37] and Lipkin-Meshkov-
Glick [38,39] models may belong to the same universality
class [34], but it also extends the universality to the
dynamics, too.
Then we consider a concrete trapped-ion realization

where the Rabi model is realized by dichromatic sideband
lasers such that the atom-coupling strength can be modu-
lated by the intensity of the lasers while the atomic and
oscillator frequency can be chosen by the frequency of the
lasers [40,41]. However, we show that, in the limit of our
interest where the critical behavior emerges, the standard
approach based on traveling-wave lasers [40,41] cannot
faithfully realize the Rabi model and obscures its universal
behavior. We propose and analyze a standing-wave con-
figuration [42,43] including current experimental limita-
tions and show that, when the Rabi frequencies of the lasers
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are adiabatically changed, it is indeed possible to observe
the universal functions predicted in the first part of the
Letter in a realistic trapped-ion setup.
Finally, we examine the effect of different noise sources

in our proposal. It is shown that the nonequilibrium
universal function is noise resilient thanks to the short
adiabatic evolution time that is required, while the equi-
librium universal function is largely affected by the noise
and requires a long coherence time of the system to be
observed.
Finite-frequency scaling.—The Rabi Hamiltonian reads

HRabi ¼ ω0a†aþΩ
2
σz − λðaþ a†Þσx; ð1Þ

where σx;z are the Pauli matrices for a two-level atom and a
(a†) is an annihilation (creation) operator for a cavity field.
The oscillator frequency is ω0, the atomic transition
frequency Ω, and the coupling strength λ. We introduce
a dimensionless coupling constant g ¼ 2λ=

ffiffiffiffiffiffiffiffiffi
ω0Ω

p
and the

frequency ratio R ¼ Ω=ω0. In the R → ∞ limit, the Rabi
model undergoes a second-order QPT at the critical point
g ¼ 1 [20]. For large but not infinite R, the ground state
expectation values and the energy spectrum exhibit a
critical scaling in R at g ¼ 1, so-called finite-frequency
scaling [20]. Here we focus on the ground state population
of the two-level atom hσzi because it is possible to measure
it with high fidelity in the trapped-ion system [44,45], and
we derive the analytic expression for its scaling relations.
In the R → ∞ limit we have hσzi ¼ −1 for g ≤ 1 and

hσzi ¼ −ð1=g2Þ for g > 1 [20]. Its singular part is hσzis ≡
hσzi þ 1 ¼ ð1 − g−2Þ vanishing as hσzis ∝ ðg − 1Þγ near
the critical point with a critical exponent γ ¼ 1. We now
consider hσzis as a function of R and g, denoted by
hσzisðR; gÞ, and examine specifically its scaling behavior
for finite R. Particularly, we find the analytical expression
of the finite-frequency scaling for R ≫ 1 and g ¼ 1 as

hσzisðR; g ¼ 1Þ ∝ R−μ; ð2Þ
where μ ¼ 2=3 is the finite-frequency scaling exponent of
σz. See the Supplemental Material [46] for the derivation
of Eq. (2). Furthermore, by a rescaling of the expectation
value and coupling strength as

Ss ≡ jg − 1j−γhσzis; G≡ Rjg − 1jγ=μ; ð3Þ
we find that the ground state population of the spin can
be cast into a function SsðGÞ, called the scaling function
[24–26]. The functional form can be obtained by (i) calcu-
lating hσzisðR; gÞ with the numerically exact diagonaliza-
tion for different values of R and g satisfying R ≫ 1 and
jg − 1j ≪ 1 and (ii) plotting the rescaled quantity Ss ¼
jg − 1j−γhσzis as a function of G ¼ Rjg − 1jγ=μ. As shown
in Fig. 1(a), the data points collapse onto a single curve,
which confirms the existence and reveals the functional
form of SsðGÞ. We also find an analytic expression for the

asymptotic behavior of SsðGÞ as limG→0SsðGÞ ∝ G−μ,
which agrees very well with the numerical results
[Fig. 1(a)]. We emphasize that the scaling function
SsðGÞ and the dynamical scaling function, to be introduced
below, are universal functions in that another model, e.g.,
the Dicke model, shows the same scaling functions [46].
Adiabatic evolution and dynamical scaling.—We now

consider the adiabatic dynamics of the Rabi model. To this
end, we prepare an initial state jΨðt ¼ 0Þi ¼ j0ij↓i, where
j0i is the zero phonon Fock state and j↓i is an atomic
eigenstate, and increase the coupling strength linearly in
time from gi ¼ 0 to gf for a duration τq; that is,
gðtÞ ¼ gft=τq. For large enough τq to satisfy the adiabatic
condition [47], one can prepare the ground state of the
Rabi model with g ¼ gf for a fixed R to high fidelity and
measure σz to observe the ground state universal function
SsðGÞ and the scaling exponent μ discussed in the previous
section. A potential limit to this approach is that the spectral
gapΔ vanishes at the QPT (R → ∞) asΔ ∝ jg − 1jζ, where
ζ ¼ 1=2 [20,23], and, for a finite R, the gap Δ of HRabi

decays as a power law Δ ∝ R−μζ=γ ¼ R−1=3 near the critical
point; therefore, for R ≫ 1, the adiabatic condition requires
τq to be much larger than the coherence time of the
system. While we examine the feasibility of the adiabatic
preparation in the last section, here we consider the case
when τq becomes progressively smaller; then, the adiabatic
condition starts to break down near the critical point first,
while it is still satisfied away from it. In other words, we go
beyond the equilibrium setting and examine the universal-
ity in adiabatic dynamics of the QPT.
The key insight is that, because of the equilibrium critical

scaling, e.g., shown in Eq. (2), one can cast the equation of
motion for the adiabatic evolution into a universal form
through a rescaling of parameters [17–19]. For the Rabi
model, we find that by rescaling the evolution time τq as

FIG. 1. Universal functions of the Rabi model. (a) Rescaled
ground state population SsðGÞ as a function of G ¼ Rjg − 1jγ=μ,
with γ ¼ 1 and μ ¼ 2=3, for different frequency ratio R ¼ 50,
100, 200, and 400 and coupling strength 0.9 ≤ g ≤ 1. ForG ≪ 1,
it follows a power law SsðGÞ ∝ G−μ. (b) Rescaled residual atomic
population SrðT;GÞ as a function of T ¼ R−1τq for a fixed value
of the rescaled final coupling strength Gf ¼ Rjgf − 1jγ=μ ¼ 0,
1=2, and 1. The quench time τq varies from 0.1=ω0 to 100=ω0 and
0.9 ≤ gf ≤ 1. The same values of R as in (a) have been used.
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T ≡ R−γ=μð1þζÞτq, where γ=μð1þ ζÞ ¼ 1, and together with
the rescaling of the coupling strength G ¼ Rjg − 1jγ=μ
introduced in Eq. (3), the equation of motion transforms
into a universal form [46], which does not depend indi-
vidually on R, g, or τq. The central quantity of our interest is
again σz. Let us denote hσzifðR; gf; τqÞ as the expectation
value of σz for the final state of the adiabatic evolution for a
given τq at the final coupling strength gf and the frequency
ratioR, and hσziðR; gfÞ as the ground state expectationvalue
for a given R and g ¼ gf. Now we introduce the residual
atomic population hσzirðR; gf; τqÞ≡ jhσzifðR; gf; τqÞ−
hσziðR; gfÞj, which quantifies the nonadiabaticity of the
evolution and vanishes for a τq satisfying the adiabatic
condition. Our main result is that the rescaled residual
atomic population Sr ≡ Rμhσzir is a universal function of
the rescaled parameters T and G [46]. To confirm this
prediction, we solve the dynamics for different τq and
calculate hσzir for a set of values of gf and R leading to a
fixed value of Gf ¼ Rjgf − 1jγ=μ. Then, we plot Sr as a
function of T and show that all the data points with the same
value of Gf collapse into a single curve, confirming that
SrðT;GfÞ is a universal function [Fig. 1(b)]. It is clear that
different choices of Gf lead to different universal curves,
as Sr is a function of both Gf and T.
Trapped-ion realization.—We consider a setup of a

single trapped ion with two traveling-wave lasers,
described by HTIðtÞ¼νa†aþðωI=2Þσzþ

P
j¼1;2ðΩd

j =2Þ×
σþe

i½ηjðaþa†Þ−ωd
j t−ϕ

d
j �þH:c:, where aðσ−Þ is an annihilation

operator for a phonon (internal levels). The phonon
frequency is ν and the transition frequency ωI. For the
jth laser, ωd

j is the frequency, ϕd
j the phase, Ωd

j the Rabi

frequency, and ηj ¼ kj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð2mνÞp

is the Lamb-Dicke
parameter, with kj being the wave vector and m the ion
mass. We consider two driving frequencies near the blue-
and red-sideband transitions, respectively; i.e., ωd

1;2 ¼
ωI ∓ νþ δ1;2, where δ1;2 ≪ ν are additional detunings
with respect to each sideband and we set Ωd

1;2 ¼ Ωd,
η1;2 ¼ η, and ϕd

1;2 ¼ 3π=2. Note that the so-called optical
rotating-wave approximation (RWA) has already been
made toHTIðtÞ, which is well known to hold in this setting.
In a rotating frame with respect to H0

TI ¼ ðν − ~ω0Þa†aþ
1
2
ðωI − ~ΩÞσz, HTIðtÞ becomes time independent and

assumes the form of the Rabi model [40,41]:

~HTIðtÞ¼e−iH
0
TItHTIðtÞeiH0

TIt≃ ~ω0a†aþ
~Ω
2
σz− ~λðaþa†Þσx:

ð4Þ

Here the new set of parameters for the Rabi model is
~ω0 ¼ 1

2
ðδ1 − δ2Þ, ~Ω ¼ 1

2
ðδ1 þ δ2Þ, and ~λ ¼ ηΩd=2.

Equation (4) is valid only within the Lamb-Dicke regime,

i.e., η
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðaþ a†Þ2i

p
≪ 1, and the vibrational RWA; there-

fore, it is not a priori evident that one can probe the QPTof
the Rabi model using this approach. The universal proper-
ties of the Rabi model emerge when R ¼ ~Ω= ~ω0 ≫ 1 and

g ¼ 2~λ=
ffiffiffiffiffiffiffiffiffi
~ω0

~Ω
q

≃ 1. However, the phonon population in
the ground state monotonically grows as one increases
~Ω= ~ω0, leading to a potential departure from the Lamb-
Dicke regime. Furthermore, the strong coupling strength

~λ≃
ffiffiffiffiffiffiffiffiffi
~ω0

~Ω
q

requires a large Rabi frequency of the laser,
which could break the vibrational RWA. Hence, we now
need to study in detail whether the desired regime R ≫ 1
and g ≅ 1 can indeed be reached.
To this end, we apply the adiabatic protocol discussed in

the previous section directly to the trapped-ion Hamiltonian
HTIðtÞ without assuming any simplification, neither the
Lamb-Dicke regime nor the vibrational RWA. This
involves preparing the initial state jΨðt ¼ 0Þi ¼ j0ij↓i,
where j0i is the zero-phonon Fock state and j↓i is the low-
energy state of the ion, and adiabatically turning on the
Rabi frequencies ΩdðtÞ for a duration of τq until it reaches
the desired final value of g ¼ gf; that is, ΩdðtÞ ¼ Ωd

ft=τq
with Ωd

f ¼ gf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ21 − δ22

p
=2η, while the detunings δ1;2 are

chosen to realize a fixed value of R and remain fixed during
the adiabatic evolution. Then, one measures the σz operator
of the final states of the adiabatic evolution and finds the
universal functions SsðGÞ and SrðT;GÞ, as described in the
previous section.
A possible set of achievable parameters for the Rabi

model in the trapped ion setup is ~ω0=2π ¼ 200 Hz and
10 ≤ ~Ω=2π ≤ 80 kHz, so that the frequency ratios 50 ≤
R ≤ 400 can be explored. This implies that the Rabi
frequency at g ¼ 1 is 23.6 ≤ Ωd=2π ≤ 66.6 kHz, where
we have used η ¼ 0.06. For the adiabatic preparation
of the ground state, the considered evolution time is
τq ¼ 50= ~ω0 ¼ 250 ms, which approximately satisfies the
adiabatic condition [46]. For the dynamical scaling, one
can choose a smaller range, 0.1= ~ω0 ≤ τq ≤ 2= ~ω0, or,
equivalently, 0.5 ≤ τq ≤ 10 ms. The numerics with the
above parameters [Figs. 2(a) and 2(b)] show a strong
deviation from the theoretical prediction of the Rabi model;
that is, the rescaled expectation values do not collapse into
the predicted universal function.
We identify that a leading-order contribution to the

breakdown of Eq. (4) is a carrier interaction, i.e.,
−iðΩd=2Þðσþeiδjt − σ−e−iδjt) for j ¼ 1, 2, that is induced
by both sideband transitions due to the large values of Ωd

used to achieve a strong coupling strength ~λ. The effect of
this process becomes dominant for R ≫ 1 and obscures
the universality of the Rabi model [Figs. 2(a) and 2(b)]. To
resolve this issue, we propose to use a standing-wave
configuration for the sideband lasers so that the carrier
interaction is suppressed. That is, we consider two additional
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lasers in HTIðtÞ, labeled as j ¼ 3, 4, such that ωd
3 ¼ ωd

1 and
ωd
4 ¼ ωd

2 andη1 ¼ −η3 andη2 ¼ −η4. The phases are chosen
as ϕ3;4 ¼ π=2 and the Rabi frequencies of two counter-
propagating lasers are ideally identical: Ωd

3;4 ¼ Ωd
1;2 ¼ Ωd.

In the standing-wave configuration the effective cou-
pling strength is ~λ ¼ ηΩd. Hence, to realize g ¼ 1, one
needs 11.8 ≤ Ωd=2π ≤ 33.3 kHz, which is a factor of 2
smaller than in the traveling-wave configuration. The
numerical results for the standing-wave configuration are
presented in Figs. 2(c) and 2(d), which show an excellent
agreement with the prediction of the Rabi model [Figs. 2(c)
and 2(d)] and demonstrate that it is possible to probe the
universal functions of the Rabi model in a trapped-ion setup
with the standing-wave configuration. Note that Figs. 2(c)
and 2(d) show that experimentally inevitable differences in
the Rabi frequencies of the counterpropagating lasers, i.e.,
Ω3;4 ≠ Ω1;2 (up to 8% of error is considered [43]), do not
affect the feasibility of the scheme.
Effects of noise.—During the adiabatic evolution various

noise sources will have an impact on the final states. Herewe
examine this impact anddemonstrate that the nonequilibrium
universal function can be observed under realistic exper-
imental conditions. The master equation that governs the
adiabatic evolution is _ρ¼−i½HRabiðtÞ;ρ�þΓdpL½σz�þ
ΓcL½σ−�þΓaL½a�þΓhL½a†�, where L½x�¼xρx†−x†xρ=2−
ρx†x=2. Typical parameters are Γdp=2π ¼ 20 Hz and
Γc;a;h ¼ 10 Hz. Therefore, we set Γdp=ω0 ¼ 0.1 and

Γc;a;h=ω0 ¼ 0.05 and solve the adiabatic dynamics
with the same system parameters used in the previous
section.
Figure 3(a) shows that SsðGÞ is strongly influenced by

the noise. For different R, the graphs no longer collapse
onto the predicted universal function. This is because the
quench time τq ∼ 250 ms required to meet the adiabatic
condition is much longer than the coherence time of 50 ms;
therefore, a lower noise rate, Γdp=ω0 ≲ 10−3, would be
required to its experimental observation [46].
On the other hand, Fig. 3(b) shows that SrðT;GÞ is much

more robust to the effect of noise, and the universality in the
dynamics remains intact. The robustness of the nonequili-
brium universal function to noises stems from the relatively
short evolution time τq compared to the coherence time.
While the small spectral gapnear the critical point necessitates
a very large τq for the adiabatic preparation of the ground
state, the nearly adiabatic dynamics considered here requires
the adiabaticity only away from the critical point where the
energy gap does not vanish, which makes its experimental
observation more favorable than the equilibrium case.
Conclusions.—We have demonstrated that the Rabi

QPT and its universal dynamics can be observed with a
single trapped ion that interacts with one of its vibrational
modes under realistic experimental conditions. We use the
equilibrium and nonequilibrium universal scaling func-
tions as a probe, where the latter is demonstrated to be
more robust against experimental noise sources. Our work,
therefore, opens the door for experimental exploration of
the finite-system quantum phase transition in trapped ion
systems.

This work was supported by the Alexander von
Humboldt foundation, the ERC Synergy grant BioQ, the
EU STREP project EQUAM, and the CRC TRR21.

FIG. 3. Effect of noises on the universal functions. The rates
Γdp ¼ 0.1ω0 and Γc;a;h ¼ 0.05ω0 are used with the same system
parameters used in the Fig. 1 to produce the solid line. (a) The
graphs corresponding to the different R do not collapse onto the
universal curve; see Ref. [46] for a discussion. (b) A rather short
range of quench time 0.1=ω0 ≤ τq ≤ 0.275=ω0 is used, as the
longer time evolution deviates from the universal behavior due to
the effect of noise [46]; while this leads to smaller data points
than Figs. 1 and 2, it nevertheless correctly reveals the substantial
part of the universal function.

FIG. 2. Universal functions SsðGÞ and SrðT;GÞ obtained from
the trapped-ion Hamiltonians with the scheme of (a),(b) two
lasers and (c),(d) four lasers, together with the result presented in
Fig. 1 (solid line). The different points represent different Rwith a
fixed effective oscillator frequency ~ω0=2π ¼ 200 Hz. In (a) and
(c), the quench time is τq ¼ 50= ~ω0 ¼ 250 ms. In (b) and (d), a
range of quench time 0.5 ≤ τq ≤ 10 ms for three different values
G ¼ 0, 1=2, and 1 is used.
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