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We numerically study the zero temperature phase structure of the multiflavor Schwinger model at
nonzero chemical potential. Using matrix product states, we reproduce analytical results for the phase
structure for two flavors in the massless case and extend the computation to the massive case, where no
analytical predictions are available. Our calculations allow us to locate phase transitions in the mass-
chemical potential plane with great precision and provide a concrete example of tensor networks
overcoming the sign problem in a lattice gauge theory calculation.
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Gauge theories are a fundamental concept in high energy
physics. Nevertheless, in many cases, such as quantum
chromodynamics (QCD), they are notoriously hard, and a
full analytical solution seems to be impossible. Following the
pioneering work by Wilson [1], lattice gauge theory (LGT)
has become a standard tool for attacking gauge theories in the
nonperturbative regime. This discretized formulation on a
Euclidean space-time lattice enabled powerful Monte Carlo
(MC) simulations that allowed the determination of phase
diagrams, mass spectra, and other properties. However, the
sign problem [2] prevents accessing certain parameter
regimes with this technique, as, for example, large parts of
the phase diagram for QCD with chemical potential.
Moreover, real-time dynamics are mostly inaccessible,
despite some recent progress enabling their study in par-
ticular regimes [3]. Consequently, there is an enduring search
for alternative approaches overcoming these limitations
[4–6], among them MC simulations on Lefshetz thimbles,
complexLangevinmethods, and density of statesmethods.A
different line of research, analyzed in a number of works
[7–11] and recently experimentally realized for small sys-
tems [12], is quantum simulation of gauge theories.
In the last decade, new methods based on tensor net-

works (TN) have revealed themselves as powerful
approaches for the nonperturbative study of quantum
many-body systems (see Ref. [13] for a review), both
bosonic and fermionic, without suffering from a sign
problem. In the context of LGT, they can be used to
approximate the partition function in a Lagrangian formu-
lation [14–16], but their main power can be exploited in the
Hamiltonian formulation, thanks to their capability to
efficiently describe the relevant states of the theory [17–
24]. Lately, there has been significant theoretical progress
with the development of gauge invariant TN formulations
suitable for LGT [11,25–29], as well as numerical simu-
lations showing the power of the method for spectral

calculations [17,18,30], thermal states [19–21], exploring
phase diagrams [22,31], and simulating real-time evolution
for Abelian as well as non-Abelian theories [18,23,24].
Some of these works achieved precisions beyond the

reach of MC calculations for the considered models in one
spatial dimension. Extending this success to higher spatial
dimensions, although conceptually possible, is not an
immediate task in the general case, but in regimes where
MC simulations suffer from the sign problem, TN tech-
niques should provide a very general solution. This major
promise can already be demonstrated in the one-
dimensional case, a task that we tackle in this Letter. We
study the multiflavor Schwinger model (quantum electro-
dynamics in 1þ 1 dimension) at nonzero chemical poten-
tial and perform calculations in regimes where MC
calculations would suffer from a sign problem [32]. We
go through the full extrapolation procedure to recover the
continuum limit to explicitly show the power of TN
approaches for overcoming the sign problem.
For two flavors with equal masses, the case on which we

focus here, the model has an SU(2) isospin symmetry
between the flavors and is in many aspects similar to QCD
as it shows confinement, an anomalous U(1) current in the
massless limit and a nonvanishing chiral condensate. In
Refs. [34,35], it was found analytically that at zero temper-
ature the model supports an infinite number of phases
characterized by the isospin number and separated by first-
order phase transitions.
Here, we numerically study the Hamiltonian lattice

formulation of the model with matrix product states
(MPS) and extrapolate to the continuum limit. As a first
necessary step, we reproduce the analytical prediction for
massless fermions from Refs. [34,35] with great precision.
Furthermore, our calculation can be readily extended to the
massive case, where no analytical computations are
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available, and we observe that the phase structure changes
significantly. Using the MPS approach, and considering the
case of vanishing background field, we are able to map out
accurately the phase diagram of the model in the mass-
chemical potential plane for a fixed volume. Our results
thus constitute an explicit demonstration that MPS allow
reliable numerical simulations in a regime where the MC
approach would suffer from the sign problem.
We adopt a lattice formulation with Kogut-Susskind

staggered fermions [36]. In the temporal gauge, and in
absence of a background field, the Hamiltonian for F
flavors on a lattice with spacing a and N sites reads

H ¼ −
i
2a

XN−2

n¼0

XF−1

f¼0

ðϕ†
n;fe

iθnϕnþ1;f − H:c:Þ

þ
XN−1

n¼0

XF−1

f¼0

½mfð−1Þn þ κf�ϕ†
n;fϕn;f

þ ag2

2

XN−2

n¼0

L2
n: ð1Þ

Here, ϕn;f is a single component fermionic field describing a
fermion of flavor f on site n, and mf=g and κf=g are
the correspondingmass and chemical potential in units of the
coupling constant, g. The operators Ln and θn act on the
gauge links between the fermions, and Ln gives the electric
flux on link n. They are canonical conjugates, ½θn; Lm� ¼
iδn;m; hence, eiθn act as a rising operator for the electric flux.
We work with a compact formulation, where θn is restricted
to ½0; 2π� [37].
Physical states, jψi, have to satisfy the Gauss law,

Gnjψi ¼ 0 ∀ n, where Gn ¼Ln−Ln−1−
P

F−1
f¼0 ½ϕ†

n;fϕn;f−
1
2
(1− ð−1Þn)� are the generators for gauge transformations.
For open boundary conditions (OBC), this allows us to
integrate out the gauge fields. Assuming zero electric field
on the left boundary, applying a residual gauge transformation,
and with a rescaling that makes it dimensionless [38], the
Hamiltonian (1) can be written as

W ¼ −ix
XN−2

n¼0
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f¼0

ðϕ†
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þ
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2
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where the adimensional parameters of the problem are
x ¼ 1=ðagÞ2, μf ¼ 2

ffiffiffi
x

p
mf=g, and νf ¼ 2

ffiffiffi
x

p
κf=g. In the

following,wewill focus on the case of two flavors in the sector

of vanishing total charge, for which the conventional MC
approach in general suffers from the sign problem [39].
Our variational Ansatz is a MPS with OBC. For N sites,

this is a state of the form

jψi ¼
X

i0;i1;…iN−1

Ai0
0 A

i1
1 …AiN−1

N−1ji0i ⊗ … ⊗ jiN−1i;

where jikidik¼1 is a basis for the Hilbert space on site k, Aik
k

are complex D ×D matrices for 0 < k < N − 1, and Ai0
0

(AiN−1
N−1) is a D-dimensional row (column) vector. The bond

dimension of the MPS, D, determines the number of
variational parameters and limits the maximum entangle-
ment in the state (see, e.g., Ref. [13]).
Although Hamiltonian (2) is nonlocal, it can be expected

that MPS are good Ansätze for the ground state, as the
original model is local, and its low-energy states are
characterized by small electric field values [40]. To show
that MPS allow for reliable calculations with proper
continuum limit in the regime of the sign problem, we
first reproduce the analytical predictions for the massless
case from Refs. [34,35], which studied the continuum
model in a fixed volume. Consequently, we consider
lattices of constant volume, Lg ¼ N=

ffiffiffi
x

p
. The isospin

number on the lattice is given by ΔN ¼ N0 − N1, with
Ni ¼

P
N−1
n¼0 ϕ

†
n;iϕn;i. It can be shown that the Hamiltonian

(2) up to a constant only depends on the difference ν1 − ν0,
commonly called the isospin chemical potential in the
literature (see Supplemental Material [42]). Thus, we study
ΔN in the ground state as a function of the difference
between the chemical potentials. Following Refs. [34,35],
we define the rescaled isospin chemical potential
μI=2π ¼ Nðν1 − ν0Þ=4πx, and hereafter, we fix ν0 ¼ 0
and only vary ν1. We are thus studying the model in a
situation where the MC approach suffers from the sign
problem. To probe for possible finite volume effects, we
explore Lg ¼ 2, 6, 8.
In order to be able to extrapolate to the continuum limit,

we study several lattice spacings corresponding to
x ∈ ½9; 121�. MPS calculations are subject to a truncation
error due to the limited bond dimension reachable, bounded
by the computational cost of treating too large matrices in
the Ansatz. To control this error for each combination of
ðLg; x; μI=2πÞ, we repeat the computation for several bond
dimensions, D ∈ ½40; 220� and extrapolate to D → ∞ (see
Supplemental Material [42]). Although MPS and TN in
general can describe fermionic degrees of freedom, we map
Eq. (2) to a spin chain by a Jordan-Wigner transformation
for convenience in the numerical simulations (see
Supplemental Material [42]).
The results for the massless case are shown in Fig. 1. As

μI=2π is increased, ΔN exhibits discontinuous changes,
corresponding to the crossing of the lowest energy levels
for two different isospin numbers. This leads to an abrupt
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change of the nature of the ground state, indicated by first-
order (discontinuous) quantum phase transitions between
phases characterized by their isospin number. The location
of the transition is determined by the position of the energy
cusps on the μI=2π axis, as seen in the upper inset of Fig. 1.
Repeating the calculations for several lattice spacings, we
can estimate the continuum phase structure of the model
(see Supplemental Material [42]). For the first two tran-
sitions, our results do not show any volume dependence, in
agreement with Refs. [34,35]. However, for transitions
between phases with largerΔN, we can see that for Lg ¼ 2,
there are deviations due to finite volume effects. For
Lg ≥ 6, those disappear, and we recover the analytical
results in the entire parameter regime under study. We
conclude that the transitions occur for μI=2π values which
are odd multiples of 1=2, in agreement with the analytical
results. The finite volume effects found in our MPS
calculation for small Lg can be explained because the total
fermion number coincides with the number of sites,
N0 þ N1 ¼ N. Hence, the system size ultimately upper
bounds Ni, and larger values for ΔN at a fixed volume
would require larger system sizes and correspondingly,
larger values of x to reach the correct continuum limit.
In contrast to the analytical calculation in Refs. [34,35],

the MPS formalism can deal with (arbitrary) mass values.
Proceeding in the same way for m=g ¼ 0.5, we obtain the
results shown in Fig. 2. We observe that the new energy
scale introduced by m=g leads to a change in the phase
structure, as the transitions are not equidistantly spaced
anymore. The continuum estimates show a clear volume

dependence, even for the first transition, and the size of the
plateaus is no longer fixed.
Computing the phase structure for several masses, we can

map out the phase diagram for themodel in them=g—μI=2π
plane for a fixed volume. Figure 3 shows the results
for Lg ¼ 8. For larger masses, the phase characterized by
ΔN ¼ 0 survives up to larger values of μI=2π, and the size of
the region for the ΔN ¼ 2 phase shrinks. The regions
describing phases with larger ΔN are less affected and only
slightly bend towards higher values of the chemical potential
difference. This behavior can be understood qualitatively as
follows: the energy eigenvalues inside each phase only
depend on the chemical potential difference, up to a constant
(see Fig. 1). This constant is mass dependent, and comparing
its value at nonzero m=g to the massless case, we observe
larger changes for phases characterized by a small isospin
number. Consequently, the locations of the level crossings,

FIG. 1. Continuum estimate for ΔN versus μI=2π, for volumes
2 (red solid), 6 (green dashed), and 8 (blue dash-dotted line). The
vertical lines indicate the theoretical prediction for the phase
transitions in the massless case. Upper inset: Close-up around the
first transition for Lg ¼ 8, x ¼ 16, m=g ¼ 0, D ¼ 160. Shown
are MPS results for ΔN ¼ 0 (blue crosses), ΔN ¼ 2 (red
crosses), and the corresponding predictions (solid lines). Lower
inset: Volume dependence of the continuous location of the
transitions for the first (red crosses), second (green crosses), third
(blue asterisks), and fourth (magenta dots) transition.

FIG. 2. Continuum estimate for ΔN versus μI=2π, for volumes
2 (red solid), 6 (green dashed), and 8 (blue dash-dotted line).
Inset: Isospin number versus μI=2π for Lg ¼ 8, x ¼ 121,
m=g ¼ 0.5, D ¼ 220.

FIG. 3. Phase diagram in the m=g—μI=2π plane for Lg ¼ 8.
The black crosses mark the computed data points, the different
colors indicate the different phases.

PRL 118, 071601 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

17 FEBRUARY 2017

071601-3



and hence, the locations of the phase transitions, are shifted,
especially for phases characterized by small ΔN (see
Supplemental Material [42]).
The MPS method is not only free from the sign problem,

but, at the end of the computation, it also yields the ground
state wave function, hence giving easy access to observ-
ables that can be expressed as matrix product operators
[43]. An interesting observable is the chiral condensate.
Previous studies [44–46] for the (single-flavor) Schwinger
model found that at finite density, the chiral condensate
shows spatial inhomogeneities of the form hψðyÞψðyÞi ¼
hψψi0 cosð2κyÞ, where ψ is a two component Dirac spinor,
κ is the chemical potential, y the position, and hψψi0 the
(spatially homogeneous) expectation value of the chiral
condensate for vanishing chemical potential. Later work
instead argued that these oscillations occur due to the
breaking of translational invariance in finite systems [47].
To be able to compare our staggered lattice calculation to
these continuum results, we sum the contribution of an even
and its neighboring odd site to the chiral condensate and
look at Cðy ¼ 2n=

ffiffiffi
x

p Þ ¼ P
F−1
f¼0ðCn;f þ Cnþ1;fÞ, n even,

where Cn;f ¼ ð ffiffiffi
x

p
=NÞð−1Þnϕ†

n;fϕn;f [48]. The result for
Lg ¼ 8 in the massless case is shown in Fig. 4. The value at
zero density (corresponding to the ΔN ¼ 0 phase) is
homogeneous up to small finite size effects at the bounda-
ries, as expected from the theoretical result. For phases at
nonzero density (given by ΔN ≠ 0), the condensate starts
to oscillate sinusoidally, as expected for a finite system
breaking translational invariance, and we observe an
increase in the oscillation frequency with increasing den-
sity. The oscillation amplitudes are close to hCðyÞi0, similar
to the theoretical predictions from Refs. [44–47] for the
single-flavor case. A more detailed study of the oscillations
in the chiral condensate will be shown elsewhere [49].

In summary, we have shown a successful lattice calcu-
lation in the regime where the conventional MC approach
suffers from the sign problem. Our results for the massless
case in a sufficiently large volume agree with great precision
with the analytical calculations from Refs. [34,35], and we
recover the predicted phase structure and locations of the
phase transitions after extrapolating to the continuum limit.
Furthermore, our calculations can be immediately extended
to the massive case, where no analytical results are available.
In this case, the observed phase structure is significantly
different, and the locations of the phase transitions are no
longer independent ofLg.We canmap out the phase diagram
of themodel at a fixed volume in them=g—μI=2π plane, and
we see that the transition from ΔN ¼ 0 to ΔN ¼ 2 is
significantly shifted towards higher values of the chemical
potential at the expense of the phase characterized by
ΔN ¼ 2. Phases with larger values of ΔN are less affected
and only slightly shifted towards higher values of μI=2π for
increasing mass. Our results for the condensate are very
similar to the theoretical predictions for the single-flavor case
at nonzero density. We observe oscillations with a density
dependent frequency around zero with an amplitude close to
the zero density condensate value.
In our study, we focused on the phases at zero back-

ground field and temperature, with nonvanishing chemical
potential, to explore a regime that suffers from the sign
problem in conventional MC calculations. Notice, however,
that the model also exhibits interesting features in other
parameter regimes. In particular, in the absence of chemical
potential and background field, it has been shown to have a
second-order phase transition for zero fermion mass at
Tc ¼ 0 [50,51]. It might also show a transition, similar to
the single-flavor case, at a nonvanishing background field,
as has been argued in Ref. [52]. Adding a background field
as well as a generalization to a nonzero temperature [19–
21] is straightforward; hence, these regimes are also
amenable to TN studies [53].
The MPS approach can be easily extended to an arbitrary

number of flavors (see Supplemental Material [42]). To
some extent, it is also possible to simulate real-time
evolution [18] and thus, to address dynamical aspects of
the model. Additionally, our results can serve as a test
bench for other methods trying to overcome the sign
problem. Moreover, our study is also promising for higher
dimensions. For the same reasons MPS with small bond
dimension provide a good Ansatz for the one-dimensional
case, we expect that the low-energy states for the two-
dimensional case can be efficiently described by projected
entangled pair states (PEPS) [54], the generalization of
MPS to two dimensions. The remarkable progress in the
analytical [31,55] and numerical techniques [56–59] for
PEPS is bringing this closer to realization.

K. C. was supported by the Deutsche
Forschungsgemeinschaft (DFG), Project No. CI 236/1-1
(Sachbeihilfe).

FIG. 4. hCðyÞi for Lg ¼ 8, x ¼ 1024, m=g ¼ 0, D ¼ 160, and
different phases. The blue crosses represent ΔN ¼ 0, the red
crosses ΔN ¼ 2, and the green asterisks ΔN ¼ 4.
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