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Every imaging system has a resolution limit, typically defined by Rayleigh’s criterion. Given a fixed
number of photons, the amount of information one can gain from an image about the separation between
two sources falls to zero as the separation drops below this limit, an effect dubbed “Rayleigh’s curse.”
Recently, in a quantum-information–inspired proposal, Tsang and co-workers found that there is, in
principle, infinitely more information present in the full electromagnetic field in the image plane than in the
intensity alone, and suggested methods for extracting this information and beating the Rayleigh limit. In
this Letter, we experimentally demonstrate a simple scheme that captures most of this information, and
show that it has a greatly improved ability to estimate the distance between a pair of closely separated
sources, achieving near-quantum-limited performance and immunity to Rayleigh’s curse.
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Any imaging device such as amicroscope or telescope has
a resolution limit, a minimum separation it can resolve
between twoobjects or sources; this limit is typically defined
by “Rayleigh’s criterion” [1], although in recent years there
have been a number of high-profile techniques demonstrat-
ing that Rayleigh’s limit can be surpassed under particular
sets of conditions [2–4].As an electromagneticwave, light is
characterized by both an amplitude and a phase. Traditional
imaging systems use lenses or mirrors to refocus this wave
and project an image of the source onto a screen or camera,
where the intensity (or rate of photon arrivals) is recorded at
each position. (We refer to all such techniques as “image-
plane counting” or IPC). Although the phase of the wave at
the position of the optics plays a central role during the
focusing, any information about the phase in the image plane
is discarded. When light passes through finite-sized optical
elements, diffraction smears out the spatial distribution of
photons so that point sources map (via the point spread
function or PSF) onto finite-sized spots at the image plane.
Thus, our ability to resolve the point sources is inhibited
when their separation in the image plane, δ, is comparable to,
or less than, the width σ of the PSF.
The typical response to diffraction limits has been to

build larger (or higher numerical aperture) optics, thereby
making the PSF sharper or narrower. In recent years,
techniques have been developed in specific cases that
address these limits in more novel ways [2–11]. Despite
their success, these techniques require careful control of the
source of illumination, which is not always possible in
every imaging application (e.g., astronomy). In order to
beat the diffraction limit for fixed, mutually incoherent
sources, a paradigm shift arising from the realization that
there is a huge amount of information available in the phase
discarded by IPC may prove revolutionary.
Inspired by ideas in quantum information and quantum

metrology [12–16], Tsang et al. [17] showed that whereas

in IPC the Fisher information, If [18], vanishes quadrati-
cally with the separation δ between two equal-intensity
incoherent point sources of weak thermal light with
Gaussian PSF, it remains undiminished when the full
electromagnetic field is considered. Later, these results
were extended to more general types of sources [19,20]. If
is related to the performance of a statistical estimator by

VarðδestÞ ≥
1

If

�
1þ ∂ðbiasÞ

∂δactual
�
; ð1Þ

where δest is some estimator of δactual and bias≡
hδesti − δactual [18]. In the case of an unbiased estimator,
this limit, known as the Cramer-Rao lower bound (CRLB)
reduces to ð1=IfÞ. The vanishing of If as δ → 0 suggests
that for closely separated sources, the variance in an IPC-
based estimate of δ is cursed to diverge. That it is
independent of δ for the full field, on the other hand,
appears to suggest that this divergence can be averted by
using phase as well as intensity information.
One natural way to do this would be to use spatial mode

demultiplexing (SPADE) [17,21], inwhich incoming light is
decomposed into its Hermite-Gauss (HG) [22] components
and the amplitude of each is measured. This HG basis is
centered exactly between the two PSFs, and the width of the
0thmode(TEM00) matches thewidth of the Gaussian PSF. It
can be shown that the full set of HG amplitudes contains the
same If as the full EM field. A reduced version called binary
SPADE prescribes discriminating only between the TEM00

mode and the sum of all other modes. For small δ, only one
othermode acquires significant amplitude in any case, so the
If available to binary SPADE becomes essentially equal to
the full Fisher information. The method can be understood
as follows: the projection always succeeds (P00 ¼ 1) when
the two point sources are overlapped (δ ¼ 0), but has a
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failure probability 1 − P00 which grows quadratically with
δ. Knowing the TEM00 component as a proportion of all HG
amplitudes (i.e.,P00 and 1 − P00) allows one to deduce δ. All
the results above and the experimental work below deal with
Gaussian PSFs, which are of interest because they are
frequently used as approximations for the Airy rings
produced by circular apertures. However, recent results
[23] have shown that in the small separation regime, a
small number of suitable spatial projections of the electro-
magnetic field capturing the full Fisher information can also
be generated for any PSF.
In this proof-of-principle experiment, we continue

with Gaussian PSFs. The spatial wave function of the
EM field of the two sources is given by ψ1=ð2Þðx; yÞ ¼
exp f½−ðx� δ=2Þ2 þ y2�=4σ2g. Experimentally, merely
capturing the TEM00 component (say, by coupling into a
single mode fiber) without a normalization factor (which
allowsus todeduce1 − P00) providesnoadvantageover IPC.
Practically speaking, the crucial information comes from a
projection onto some mode orthogonal to TEM00 in order to
estimate1 − P00.WhileamodesuchasTEM10wouldcontain
all the information (for a separation in the x direction
in that example), the same scaling can be obtained by
projecting onto any spatially antisymmetric field mode. As
a proof of principle, we have designed and implemented an
experimentally convenient method, super-resolved position
localization by inversion of coherence along an edge
(SPLICE), which instead carries out one single technically
straightforward projection onto the mode function
ψ⊥ðx; yÞ ¼ exp ½−ðx2 þ y2=4σ2Þ�sgnðxÞ. This function is
constructed such that its inner product with TEM00 vanishes.
The probability that such a projection succeeds is

P⊥ ¼ 1

2
ðjhψ1jψ⊥ij2 þ jhψ2jψ⊥ij2Þ ¼ e−2Δerf2

ffiffiffiffi
Δ

p
; ð2Þ

where Δ ¼ δ2=32σ2, δ is the separation between point
sources on the image plane, and ψ1=ð2Þ is the field from each
source.
The per-photon Fisher information can be written as

If ¼ ðe−Δ ffiffiffiffiffiffiffi
πΔ

p
erf

ffiffiffiffi
Δ

p
− e−2ΔÞ2

2πσ2

þ
h
e−Δ

ffiffiffiffiffiffiffi
πΔ

p
erf2ð ffiffiffiffi

Δ
p Þ − e−2Δerf

ffiffiffiffi
Δ

p i
2

2πσ2ðe2Δ − erf2
ffiffiffiffi
Δ

p Þ ; ð3Þ

where the first term comes from P⊥ and the second from
1−P⊥. Crucially, as Δ→ 0, 1 − P⊥ vanishes, meaning that
an experimentally simple scheme for projecting only onto
ψ⊥ does as well as a more complicated schemewhich could
measure multiple projections simultaneously. In Fig. 1, we
plot the Fisher information for SPLICE in comparison with
other methods. It is easy to see that it remains nonzero as
δ → 0, evading Rayleigh’s curse, and extracting nearly 2=3
of the total information available to full SPADE using an

experimentally simple technique. More sophisticated meth-
ods relying on wave guides or cavities could be designed to
approach 100% of the optimal If.
In order to experimentally demonstrate improved per-

formance over IPC, we used two mutually incoherent
collimated TEM00 Gaussian beams in place of distant
point sources and an imaging optical setup. The beams
were directed through a Sagnac-like beam displacer shown
in Fig. 2. By moving a mirror on a motorized translation
stage as shown, we precisely control the separation δ
between the otherwise parallel beams. The separation is
induced symmetrically, such that the geometrical centroid
(x0, y0) remains static.
At zero separation, the beams are overlapped and are

both coupled into single-mode TEM00 fiber (coupling
efficiencies are 90% and 85%, respectively). Collimation
of the beams is such that their waists are closely matched
immediately before the fiber coupler (σ ¼ 434� 3 and

FIG. 1. Theory plot of the Fisher information for SPLICE, binary
SPADE and IPC vs beam separation δ, normalized to units of
N=4σ2 and σ, respectively.

FIG. 2. Cartoon of experiment. Shown is the experimental
apparatus. In the lower right-hand box is a representation of
SPLICE, the measurement scheme tested in this experiment. In
the upper right-hand box is a sketch of the spatial profile of the
electromagnetic field before the measurement. The rest of the
figure depicts the device used to simulate the two light sources,
which can be displaced around their centroid by the displacement
of the top mirror.
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420� 7 μm) in order to emulate Gaussian point spread
functions of distant sources. The projection onto ψ⊥ (the
SPLICEmeasurement) is achievedby inserting a phase plate
immediately in front of the coupler such that when δ ¼ 0, a
semicircular cross section of the beams undergoes a π-phase
shift whereas the other half experiences none. The phase
plate consists of two transparent glass flat microscope cover
slips, connected along one sharp rectangular edge. They are
mounted such that one glass slip tilts relative to the other by
pivoting along that edge. We then position this contraption
such that the connected edge of the glass slips bisects the
circular beam cross sections when both beams are over-
lapped (i.e., δ ¼ 0). Thus, we can impart different phase
shifts onto opposite halves of the beams by tilting one glass
slip relative to the other (which we do, in order to minimize
coupling into an otherwise well-aligned coupler). We
typically achieve an extinction of ≥99%.
The light source used to create the two mutually incoher-

ent beams is an 805-nm heralded single-photon source
which relies on type-I spontaneous parametric down-
conversion (SPDC) in a 2 mm-thick BBO crystal. The
crystal is pumped by 402.5 nm light obtained from a
frequency-doubled 100-fs Ti:sapphire laser. One photon
from the SPDC pair is used to herald the presence of a
signal photon as a means of rejecting spurious background
light and detector dark counts (our accidental coincidences
average 2� 1 counts=sec). Our SPDC source has a very low
probability of producing more than one photon per coher-
ence time (≈150 fs). This resembles the regime investigated
in the original theory proposal [17,24]. Furthermore, the low
intensity of the source allows us to directly compare our
experimental performance with the quantum limit shown in
Fig 1. It must be noted that the use of heralded single photons
is not necessary to this scheme, which is independent of the
photon statistics of the point sources. In order to emulate two
point sources, the signal photon is split at a 50=50 fiber
splitter and out-coupled to free space. The two resulting
beams are incoherent; they have splitter-to-coupler distances
that differ by 5 cm, whereas the SPDC photons are filtered to
Δλ ¼ 3 nm (i.e., coherence length ≈ 45 μm). ND filters
were used to reduce the intensity imbalance between the
beams to ≈ð3� 3Þ%.
To compare the performance of our method (SPLICE)

with a more traditional imaging setup relying on IPC, we
replaced the phase plate with a 200 μm slit that served as
the image plane, coupling all the light transmitted through
the slit into a multimode fiber. Scanning the slit, we were
able to perform one-dimensional IPC.
With SPLICE, the separation of the incoherent beams

was scanned, with the detectors counting for 1 sec at each
step. Two sets of SPLICE scans were performed, one at
coarse intervals of δ (spanning −1.16 to þ1.16 mm,
in steps of 0.08 mm). Another scan at finer intervals
(−0.43 mm ≤ δ ≤ þ0.37 mm in steps of 0.032 mm) was
performed to provide more data points in the region of low
separation, where SPLICE provides an advantage. Data

from nine repetitions of the coarse scan and fifteen of the
fine scan were recorded.
Whereas the ideal functional form for the resulting count

rate vs separation δ is proportional to Eq. (2), we add a
constant γ to account for residual background counts:

SPLICE counts ¼ α exp

�
−
ðδ − δ0Þ2
16σ2f

�
erf2

�
δ

4
ffiffiffi
2

p
σf

�
þ γ:

ð4Þ

A calibration curve was obtained from a least squares fit of
this function to data from a longer run (2 sec count time
instead of 1 sec for each δ). From a fit to the singles counts
(counts which are not conditioned on the simultaneous
detection of a heralding photon), the beam waist σf
(0.46 mm) and δ0 were extracted. Then, the normalization
αð1206s−1Þ was extracted from a fit to coincidence counts.
The background γ was fixed to an average of multiple
values detected at a separation of δ0 (2.73 mm). This step
might be thought of as being analogous to characterizing
one’s imaging optics before use. One might then use the
curve as a “lookup table” from which δ can be estimated
from count rates. We performed such a lookup with the
remainder of our data. The resulting estimates for δ are
plotted versus their actual values (as reported by motorized
translation stage controllers) in Fig. 3(a).
The traditional image plane counting data were acquired

using the configuration described above, scanning the
200 μm slit between −1 and þ1 mm of the centroid of
the two beams, counting for 4 sec at each step. Again, we
repeated this for various separations δ and, in turn, repeated
the whole scan several times. As before, a set of coarse scans
(−0.028mm≤ δ≤ 1.25mm in steps of 0.064 mm, 16 rep-
etitions) and a set of fine scans (−0.42 mm ≤ δ ≤ 0.35 mmin
steps of 0.032 mm, 17 repetitions) were performed.
Estimation of δ in this IPC comparison was done by least-
squares fitting the resulting image plane intensity profile to

(a) (b)

FIG. 3. Inferred separation vs known actual separation for
(a) SPLICE (from lookup on calibration curve) and (b) IPC. Note
that the spread in the IPC estimates grows drastically as δ → 0,
while the spread for SPLICE remains essentially constant.
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IPC counts ¼ α½exp− þ expþ þ γ�; ð5Þ

where exp� ¼ exp ½−ðx� δ=2Þ2=2σ2�. Again, a calibration
waist σ and background γ were obtained beforehand, leaving
the scale α and separation δ as the only fitting parameters. In
practice, the fitting procedure used to fit IPC data for small δ
was different from the one used to treat data for large δ. For
the latter, we simply used built-in numerical algorithms in
Mathematica and NUMPY. For small δ’s, however, the
routines exhibited convergence and stability issues, forcing
us to Taylor expand Eq. (5) to 2nd order in δ and manually
invert the resulting 2 × 2 design matrix. The resulting
estimated separations are plotted against actual separations
in Fig. 3(b). As is immediately apparent, for separations
below about 0.25mm(approximately 0.6σ), the spread of the
IPC data begins to grow, while that of the SPLICE data
remains essentially constant.
Two key metrics for the performance of either method

are the standard deviation (SD) (i.e., “spread”) and root-
mean-square error (RMSE) of the estimated beam separa-
tion. The SD measures the precision of a data set but not
necessarily its accuracy, while the RMSE is sensitive to the
accuracy since it quantifies the error relative to a known
actual value and not simply the reported result. In Fig. 4,
SD and RMSE are plotted versus known actual separations.
In order to ensure a reasonably even-footed comparison

between IPC and SPLICE, the spreads in inferred separation
plotted in [Fig. 4(a)] are scaled by

ffiffiffiffi
N

p
. For IPC, N is simply

the total photons that comprise an “image” on the image
plane, which in our case is actually a set of photon counts,
one at each position of the 200 μm slit. We measured N ¼
2900 and N ¼ 2800 for the coarse and fine scan respec-
tively. For SPLICE, during a calibration run, we estimate N
by counting at our detector over a 1 sec window while both
beams are centered (i.e., δ ¼ 0) on the coupler into TEM00

fiber with the phase plate removed. Since our source
intensity is stable, this gives us an estimate of the number
of incident photons for subsequent measurements when
δ ≠ 0. For SPLICE, we measured N ¼ 1500 and N ¼ 1200
for the coarse and fine scans respectively.
The RMSE plotted in Fig. 4(b). is not similarly normalized

because in addition to possible systematics, the inferred
separation is biased relative to the actual separation when δ
is small (see Fig. 5 and the Supplemental Material [25]).
Apriori, there is no reason to suspect either bias or systematics
to scale as

ffiffiffiffi
N

p
. Despite not normalizing and despite using

approximately twice as many photons, the IPC method
performs noticeably worse than SPLICE when δ < 0.6 mm.
The attentive reader will note that while the spread is

greater for IPC, it does not diverge as δ → 0. In fact, it would
be implausible for the uncertainty on δ to ever exceed σ [as is
clear from inspection of Fig. 4(b) at small δ]. The apparent
discrepancywith the vanishing of the Fisher information can
be understood by recognizing that the practically imple-
mented IPC estimator is not unbiased. To better understand

the bounds on the advantage that one can expect of SPLICE
over IPC,we return toEq. (1). Clearly, one needs to know the
bias to evaluate the RHS. For SPLICE, the only potential
source of bias is the lookup procedure. If, for example, a
less-than-perfect visibility results in a calibration curve that
does not vanish at δ ¼ 0, then onemight obtain “unphysical”
data points that fall under the minima of the calibration
curve, thereby resulting in a biaswhen a lookup is attempted.
In our case, this is negligible since our visibility exceeds
99%. The CRLB is therefore just the reciprocal of If,
implying a 1=

ffiffiffiffi
N

p
scaling in the spread of δest.

With IPC, the least-squares estimate of δ is heavily
biased at small δ. An intuitive way to understand this is to

(a)

(b)

FIG. 4. (a) Renormalized standard deviation (SD) and (b) un-
normalized root mean-square error in the estimated separation
plotted as functions of actual separation for both IPC and SPLICE.
We plot the computed SDmultiplied by

ffiffiffiffi
N

p
to compensate for the

scaling of the uncertaintywith the size of the data set. The solid and
dashed curves are the correspondingMonteCarlo simulations. The
dotted curve is the CRB for IPC and the dashed horizontal line
represents the absolute fundamental limit of 2σ=

ffiffiffiffi
N

p
. The RMSE

(unlike SD) is not similarly rescaled. It allows us to gauge absolute
error relative to the known value of the parameter being estimated
so that biases are accounted for. Note that two methods were used
in the fitting of IPC data to Eq. (5); for small δð<0.65 mmÞ, Eq. (5)
was expanded to 2nd order and linear regression was performed
whereas for large δð>0.4 mmÞ, a nonlinear fitting routine built into
Mathematica was used.
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note that since the problem being addressed is the resolving
of two equal intensity sources, the þδ and −δ cases are
physically indistinguishable; therefore, what is really being
estimated is the absolute value jδj. But as long as the spread
in the estimated δ is nonzero, the mean estimated jδj is
never zero. Figure 5 shows a plot of mean inferred δ
(averaged across all our data sets) vs actual δ. Overlayed is
a theory curve for IPC, which takes into account an
expected bias at small δ. The vanishing of the slope of
this curve at low separations means that any attempt to
invert it, generating an unbiased estimator, will introduce a
diverging uncertainty.
In Ref. [25], we present theory showing that the bias term

for IPC falls to −1 sufficiently quickly that the RHS of
inequality (1) tends to a finite value as δ → 0. That finite
value is shown to scale as N−1=4, which is in stark contrast
to the behavior of the spread at large δ (for IPC) as well as
for SPLICE (at all δ), where the standard scaling ofN−1=2 is
obeyed. This scaling is further substantiated with
Monte Carlo simulations shown in a figure in Ref. [25].
Thus, while SPLICE does not offer an infinite advantage
over IPC as a naive analysis might have us believe, it does
nevertheless offer a substantial improvement in the absolute
error and the scaling with photon number, while simulta-
neously eliminating the problem of bias.
In summary, we have developed and demonstrated a

simple technique that surpasses traditional imaging in its
ability to resolve two closely spaced point sources. For
δ < 0.2 mmð0.47σÞ, the average spread in the measured
separation was approximately twice the quantum limit.
Nearing zero separation, SPLICE has outperformed IPC
by reducing the normalized standard deviation by a factor of
2 and the unnormalized total error by a factor of 3 despite the
higher photon number used in IPC. Furthermore, unlike

existing superresolution methods, ours requires no exotic
illumination with particular coherence or quantum proper-
ties, and is applicable to classical incoherent sources.
Crucially, as a proof of principle, this technique highlights
that the fundamental limits on the precision with which one
can estimate the separation between two point sources
(2σ=

ffiffiffiffi
N

p
) are independent of the separation itself. In tradi-

tional imaging techniques discarding the phase information
(IPC), for separation below Rayleigh’s criterion(δ≲ σ), the
standard deviation in the measurement of separation goes as
2

ffiffiffi
2

p
σ2=ðδ ffiffiffiffi

N
p Þ for the best unbiased estimator or as approx-

imately ασ=N1=4, where α is a numerical factor of the order
of unity, when the bias becomes dominant. We expect that
SPLICE and other related techniques that do not discard the
phase informationwill be developed in the future for a broad
range of imaging applications.
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discovery and triggered this work. This work was funded
by NSERC, CIFAR, and Northrop-Grumman Aerospace
Systems NG Next.
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Note added.—While preparing this manuscript, we learned
that similar work was being pursued by Yang et al. [26]
using inversion interferometry, Sheng, Durak, and Ling
[27] using heterodyne detection, and Paúr et al. [28] using
digital holography.
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