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Anopenquestionof fundamental importance in thermodynamics is how todescribe the fluctuationsofwork
for quantum coherent processes. In the standard approach, based on a projective energy measurement both at
the beginning and at the end of the process, the first measurement destroys any initial coherence in the energy
basis. Here we seek extensions of this approach which can possibly account for initially coherent states. We
consider all measurement schemes to estimate work and require that (i) the difference of average energy
corresponds to average work for closed quantum systems and that (ii) the work statistics agree with the
standard two-measurement scheme for states with no coherence in the energy basis. We first show that such a
scheme cannot exist. Next, we consider the possibility of performing collective measurements on several
copies of the state and prove that it is still impossible to simultaneously satisfy requirements (i) and (ii).
Nevertheless, improvements do appear, and in particular, we develop a measurement scheme that acts
simultaneously on two copies of the state and allows us to describe a whole class of coherent transformations.
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The second law of thermodynamics, as a statement about
average work and average heat, remains correct even when
one goes down to themicroscopic scale. Nevertheless, unlike
the macroscopic case, fluctuations of work and heat become
significant for small systems and are not negligible anymore.
As a consequence, and starting with the seminal papers [1,2],
fluctuations ofwork have become a topic of central interest to
statistical thermodynamics (see, e.g., Refs. [3–6]).
At the same time, small scales bring quantumeffects along

with them, and the very notion of a work variable becomes
challenging to define [7–25]. Indeed, it is no surprise that
although quantum mechanics is very definitive when it
comes to averages (hence, average work is a well-defined
quantity), it abolishes the notion of phase-space trajectories,
thereby making it impossible to define the work variable by
directly applying the classical intuition. This problem is
generic to quantum mechanics, and is captured by the so-
called full counting statistics [26,27]. In fact, the latter can be
used in the problem of defining a work variable [12,28,29].
In this article, the scenario under consideration consists of

a system described by a quantum state ρ andHamiltonianH.
The system undergoes an externally controlled Hamiltonian
evolution, described by a unitary transformationU, and ends

up in a new quantum state, ρ→
evol

UρU†, with a new
Hamiltonian H0. Given this process, there are several
approaches to obtaining the statistics of work, namely,
the set of outcomes fWg and their probability distribution
PW [9,11,16]. This diversity comes from the fact that,

unlike in classical mechanics, in order to build PW in
quantum physics, one has to specify the measurement
scheme through which such knowledge is obtained.
Furthermore, measurements are invasive, so the observation

itself can modify the original process, ρ→
evol

UρU†, and
hence the energetics.
In order to design a scheme that is minimally invasive,

and at the same time physically well motivated, we demand
two requirements on the corresponding PW .
(i) In a closed quantum system, the difference of average

internal energy corresponds to work. This imposition goes
back to the very definition of work and heat in phenom-
enological thermodynamics in which, for closed systems,
every change of energy comes in the form of work. For the
considered process, this is equivalent to demanding

X
W

WPW ¼ trðUρU†H0Þ − trðρHÞ: ð1Þ

This should remain valid for all ρ’s and U’s.
(ii) For states with no quantum coherence, the results of

classical stochastic thermodynamics should be recovered.
Classical stochastic thermodynamics, in particular, fluctuation
theorems, have been extended in the quantum regime by the
two-projective-energy-measurements scheme [4,8,30,31],
referred to as the TPM scheme here. In this Letter, we demand
strict agreement with this scheme for classical diagonal states.
By using this requirement, we ensure that our definition of
fluctuating work has a proper classical limit [16,20].
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While these two requirements appear reasonable, it is
straightforward to see that the existing definitions of work
do not satisfy both of them. For example, the TPM scheme
trivially satisfies (ii) but fails to satisfy (i) whenever the
state has quantum coherence, as the first measurement
becomes invasive and destroys all the coherences in the
state [32]. The incompatibility also remains for Gaussian
energy measurements [16,33]. On the other hand, the
operator of work [10] satisfies (i) but not (ii). Other recent
definitions of work [11–13], in which both requirements
are satisfied, suffer from negative probabilities, which
cannot be understood as a quantum measurement [34].
The main result of this Letter is to rigorously prove that

this incompatibility is not just a shortcoming of particular
approaches but rather a fundamental limitation imposed by
quantum mechanics. Namely, we show that there exists no
measurement of work that simultaneously satisfies the two
requirements imposed above for all processes and states.
This shows that observing the microstatistics inherently
changes the global (average) work when dealing with
quantum systems. This result represents a no-go result in
the definition of work as a fluctuating quantity in quantum
mechanics and sheds light on different definitions of work
in the literature [8,11–16,25].
Besides this no-go result, we also construct new schemes

for estimating fluctuating work which can approximately
describe coherent transformations. More concretely, we
construct a scheme that satisfies (ii) exactly, and (i) to a
certain level of approximation. The main idea behind the
scheme is to use global measurements, where a number of
copies of the state independently undergoing the same
process can be measured simultaneously. As such, the
backaction of the measurement can be reduced, and hence
we can work more closely with the original process

ρ→
evol

UρU†. This represents a first step towards the
measurement of fluctuating work in quantum coherent
evolutions.
Fluctuations of work, generalized quantum measure-

ments, and convexity.—In this Letter, we assume that
fluctuations of work can be characterized by a real random
variable W, to which a probability distribution PW can be
assigned [35]. We also follow the standard approach,
adopted in most of the previous attempts, and assume that
work fluctuations can be observed. In quantum physics,
this means that they can be estimated through a measure-
ment process, which in turn can always be described by a
generalized quantum measurement, defined by a positive-
operator-valued measure (POVM) [36]. A POVM is a set of
non-negative Hermitian operators fMðWÞg, which satisfyP

fWgMðWÞ ¼ I. Each possible value of work W is asso-

ciated with an operatorMðWÞ, so the probability to obtainW
can be computed through the generalized Born rule:

PW ¼ trðρMðWÞÞ: ð2Þ

We consider measurement operators MðWÞ that can depend
on the process, Π ¼ ðH;H0; UÞ, but are independent of the
initial state ρ:

MðWÞ ¼ MðWÞðΠÞ: ð3Þ
Indeed, one would like to have a universal scheme to
estimate work so that there is no need for adjusting the
measurement apparatus to the initial state.
One may question why quantum work fluctuations should

correspond to an observable quantity and thus be defined
through a measurement. Interestingly, it is possible to arrive
at expressions (2) and (3) using an alternative, slightly more
formal approach. The starting point is the same; namely,
work fluctuations should be described by a random variable,
where to each outcome W, a probability PW is assigned. In
general, this assignment can depend both on the process
and the state: PW ¼ PWðΠ; ρÞ. Now, it is natural to assume
that if one picks the initial state ρ1 with probability p1

and state ρ2 with probability p2 (p1 þ p2 ¼ 1), then the
resulting work distribution is the mixture of the individual
work distributions, fPWðΠ; ρ1Þg with probability p1 and
fPWðΠ; ρ2Þg with probability p2. In other words,

PWðΠ;p1ρ1þp2ρ2Þ¼p1PWðΠ;ρ1Þþp2PWðΠ;ρ2Þ ð4Þ

for all W’s. Imposing this requirement, a Gleason-type
argument (see Sec. I of Ref. [37]) guarantees that for each
W there exists a non-negative Hermitian operator MðWÞ

independent of ρ, such that PWðΠ;ρÞ¼ trðMðWÞρÞ. Thereby,
this shows that invoking POVMs and imposing (2) and (3)
can interchangeably be replaced with the single linearity
condition (4). Put differently, Eqs. (2) and (3) not only imply
linearity of PW with respect to convex combinations of
density matrices but are also equivalent to it.
Minimal requirements for the statistics of work.—Given

the previous definitions, we can now express the require-
ments presented in the introduction in detail. Regarding
requirement (i), the average work of a certain process is
given by

P
W trðMðWÞρÞW. By introducing the operator

X ¼
X
W

WMðWÞ; ð5Þ

it can be rewritten as hWiρ ¼ trðXρÞ [40]. From expression
(1), one then obtains trðXρÞ ¼ tr(ðH −U†H0UÞρ). Since
this must hold for any ρ, requirement (i) is equivalent to

X ¼ H −U†H0U: ð6Þ
Note that this does not fix the measurement scheme—there
can be many combinations of non-negative MðWÞ’s sum-
ming up to I and yielding the same X.
In order to describe requirement (ii), let us briefly recall

the TPM scheme. Expand the Hamiltonians as H ¼P
iEijiihij and H0 ¼ P

iE
0
iji0ihi0j [41]. Now, the first step

of the scheme consists of a projective energy measurement
of ρ, which yields Ei with probability hijρjii. Only after this
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measurement is the process implemented, and the state
jii evolves under U. Finally, a projective energy measure-
ment with respect to the final Hamiltonian is performed,
yielding jj0i with conditional probability jhj0jUjiij2. To this
realization, a work value WðijÞ ¼ Ei − E0

j is assigned, with

the corresponding probability of occurrence pðijÞ ¼ ρiipi;j,
where pi;j ¼ jhj0jUjiij2. The resulting probability dis-
tribution for work can be written as PTPMðWÞ ¼P

ijδðW −WðijÞÞpðijÞ, where δ is the Dirac delta function.
As noted in Ref. [42], thewhole scheme can be expressed by

the following POVM: MðWÞ
TPM ¼ P

ijδ(W − ðEi − E0
jÞ)

pi;jjiihij. Formally, requirement (ii) then simply states that

trðρMðWÞÞ ¼ trðρMðWÞ
TPMÞ; ∀ W; ∀ ρ ¼ DHðρÞ; ð7Þ

where DH is the operation removing all coherence between
eigenspaces of H.
Before proving our main result—the incompatibility of

these two requirements—let us study condition (7) in more
detail. Generally speaking, realizations of work (W inMðWÞ)
can take any real value. However, by considering ρ ¼
jkihkj∀k in Eq. (7), and setting W ≠ Ei − E0

j, we obtain

hkjMðWÞjki ¼ 0 ∀ k if W ≠ Ei − E0
j: ð8Þ

Since MðWÞ is a non-negative operator, this means that
MðWÞ ¼ 0, whenever W ≠ Ei − E0

j. Hence, the only values
of W that can be observed, i.e., those for which MðWÞ ≠ 0,
are the energy differences.
Next, we focus on the case where the possible values of

work, Ei − E0
j, are nondegenerate. We introduce the oper-

ators MðijÞ ≡MðEi−E0
jÞ and write the POVM of the TPM

scheme as

MðijÞ
TPM ¼ pi;jjiihij: ð9Þ

Consequently, Eq. (7) will acquire the following form:

trðρMðijÞÞ ¼ ρiipi;j ∀ ρ ¼ DHðρÞ and ∀i; j: ð10Þ
By again considering ρ ¼ jkihkj∀k, we obtain fromEq. (10)
that hkjMðijÞjki ¼ δikpi;j. Now, since there is only one
nonzero diagonal element, the non-negativity of MðijÞ
implies that all off-diagonal elements are zero. Therefore,
the conditions (8) and (10) unambiguously fix the meas-
urement operatorsMðijÞ to be identical to the ones in Eq. (9).
No-go result for the characterization of work fluctua-

tions in coherent processes.—We are now ready to prove
that the two requirements cannot be jointly satisfied for
all processes and states. For that, note that it is enough to
construct a counterexample. Consider a two-level system
with initial state ρ. It starts with Hamiltonian H ¼ ϵj1ih1j
and ends with H0 ¼ ϵ0j1ih1j, and the process is such
that the unitary evolution operator is given by U ¼
j0ihþj þ j1ih−j, with j�i ¼ ðj0i � j1iÞ= ffiffiffi

2
p

. As we
showed above, requirement (ii) fixes the POVM matrices
to be MðijÞ ¼ pi;jjiihij, which, through Eq. (5), give us an

expression for X: X ¼ −ϵ0j0ih0j=2þ ð2ϵ − ϵ0Þj1ih1j=2.
On the other hand, requirement (i) demands, through
Eq. (6), that X equals H −U†H0U ¼ ϵj1ih1j − ϵ0j−ih−j.
For any nonzero ϵ0, the two expressions for X do not
coincide. Hence, this provides the counterexample.
This no-go result shows that any apparatus for measuring

work that gives correct classical outputs for classical states
necessarily disturbs the process so much that it changes the
average work. The implications of this result for existing
methods to describe the fluctuations of work in externally
driven quantum systems are discussed in Table I.
Extension to global measurements.—In order to reduce

the backaction of the measurements, we now extend our
considerations to global measurements, where N copies of
the state independently undergoing the same process can be
globally processed. In this case, expression (2) is replaced by

PW ¼ trðρ⊗NMðWÞÞ: ð11Þ
Examples of global measurements include sequential mea-
surements, in which a different measurement is imple-
mented in each copy,

MðWÞ ¼ MðWÞ
1 ⊗ MðWÞ

2 ⊗ … ⊗ MðWÞ
N ; ð12Þ

feedback measurements, in which MðWÞ
j can depend on the

previous outcomes, and finally, entangling measurements,
which cannot be written as a convex combination of
measurements like Eq. (12). Clearly, global measurements
can provide an advantage here, and the intuition behind this
is twofold: On the one hand, one canmeasure some copies at
the beginning and some others at the end of the process,
thereby minimizing the disturbance induced by the meas-
urement apparatus. On the other hand, in the many-copy
case, the relative weight of energy-basis coherences
becomes less significant [43]. It is also important to note
that by assuming the form (11),we break the convexity (4) of
PW , thereby increasing the class of allowed functions.
When considering N copies of the state, ρ⊗N , there are

two natural ways to generalize our previous considerations:
Either one considers the total work extracted in the process
ρ⊗N ⟶ ðUρU†Þ⊗N , or one coarse-grains the measure-
ments to estimate the work extracted from a single copy.
In the latter case, the otherN − 1 copies are used to obtain a

TABLE I. Comparison between three different approaches to
characterize the fluctuations of work in externally driven quan-
tum systems: the TPM scheme [8], the operator of work [10], and
approaches based on quasiprobabilities [11–13]. Each approach
fails to satisfy a different requirement, as expected from the no-go
result.

Measurable
Fluctuation
theorems

Coherent
processes

TPM scheme ✓ ✓ ✗
Operator of work ✓ ✗ ✓

Quasiprobabilities ✗ ✓ ✓
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more refined description of the evolution. In either case, we
show that no measurement scheme exists that can simulta-
neously satisfy (i) and (ii) exactly, andwe thereby extend our
previous result to collectivemeasurements. For clarity of the
discussion, here we focus on the individual work and leave
the details of the total work for Sec. II A of Ref. [37].
For global measurements on N copies of the state, the

operators MðWÞ
N act on ρ⊗N instead of ρ. Then, requirement

(ii) can be expressed as trðρ⊗NMðWÞÞ ¼ trðρMðWÞ
TPMÞ∀ρ ¼ DHðρÞ. Requirement (i) reads as trðρ⊗NXÞ ¼

trðρHÞ − trðUρU†H0Þ, ∀ρ, where X ¼ P
WWMðWÞ. Notice

that essentially the same restrictions are imposed on the
measurement operators MðWÞ, which now act on a Hilbert
space of dimension dN instead of d, the dimension of ρ. This
gives an enormous freedom that was not present before.
Nevertheless, despite the freedom to choose theMðWÞ, we

construct a process where both requirements cannot be
simultaneously satisfied (see Sec. II B of Ref. [37]).
The counterexample is based on taking unitaries of
the form UðεÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p
Iþ εiσy, to then show that, if

ε decreases fast enough with the increase of N, the fluctua-
tions arising from UðεÞ can never be completely charac-
terized. Hence, we show the incompatibility between
preserving the average work and recovering the classical
limit for the most general conceivable measurements.
A new measurement scheme to evaluate the quantum

fluctuations of work.—Based on the idea of collective
measurements, here we construct a new measurement
scheme to approximately describe the fluctuations of
work in coherent processes. For that, let us first introduce

Tj ≡U†jj0ihj0jU; ð13Þ
where we recall that H0 ¼ P

jE
0
jjj0ihj0j. Consider now

the expansion, Tj ¼ TðdiagÞ
j þ Tðoff-diagÞ

j , with TðdiagÞ
j ¼P

kjhj0jUjkij2jkihkj and Tðoff-diagÞ
j ¼ P

l≠shljUjj0i
hj0jUjsijlihsj. Clearly, Tðoff-diagÞ

j acts on the off-diagonal
elements of ρ, and, since trðUρU†H0Þ ¼ P

jE
0
jtrðρTjÞ, it

brings the coherent part of work.
Now, the measurement scheme acts on two copies of ρ,

ρ⊗2, and is given by the following POVM elements (see
Sec. III of Ref. [37] for a detailed derivation),

MðijÞ
λ ¼ jiihij ⊗

�
hijTðdiagÞ

j jiiIþ λTðoff-diagÞ
j

�
; ð14Þ

where the parameter λ is chosen such that

λ ¼ max
α

ðα∶ MðijÞ
α ≥ 0 ∀ i; jÞ: ð15Þ

The probability trðρ⊗2MðijÞ
λ Þ is then associated with the

value of work Ei − E0
j.

The measurement scheme (14) is a combination of two
measurements: a projective energy measurement on the
first copy of ρ at the beginning of the process, and a

(in general) nonprojective measurement on the second copy
after being evolved through U. The parameter λ given by
Eq. (15) is introduced to ensure the positivity of the POVM
elements so that this measurement scheme is operationally
well defined and can be experimentally implemented.
Furthermore, notice that

MðijÞ
λ ¼ MðijÞ

TPM ⊗ Iþ λjiihij ⊗ Toff−diag
j : ð16Þ

Hence the scheme can be seen as an extension of the
standard TPM scheme: It acts in the same way on the
diagonal part of ρ and additionally brings information
about the coherent work through the second term in
Eq. (16). More precisely, the enhancement with respect
to the TPM scheme is quantified by λ: For λ ¼ 1, the
average work remains unchanged, whereas for λ ¼ 0, one
obtains the same results of the TPM scheme. In Sec. V of
Ref. [37], we determine λ for generic qubit evolutions.
In order to show the power of this scheme, we focus on a

particular family of evolutions, namely, maximally coher-
ent processes, which are unitary operations of the form

W ¼ 1ffiffiffi
d

p
Xd−1
j;k

e−
2πi
d jkjjihkj; ð17Þ

where d is the Hilbert space dimension. Unitary operations
of the form (17) map basis states to maximally coherent
states and vice versa, and hence are of great importance
here. For such processes, the maximization (15) yields
λ ¼ 1; see Sec. IV of Ref. [37]. Furthermore, the POVM
elements take the simple form

MðijÞ
λ¼1 ¼ jiihij ⊗ W†jjihjjW; ð18Þ

which simply corresponds to a projective energy measure-
ment on the first copy, followed by a projective energy
measurement on the second copy after the evolution.
Let us now look at the probabilities generated by Eq. (18)

for the simplest instance of the evolution (17) with d ¼ 2
acting on a fully coherent state, i.e.,

jþi⟶W j0i; ð19Þ
with jþi¼ðj0iþj1iÞ= ffiffiffi

2
p

. By applying Eq. (18) on jþi⊗2,
and using Wj0i ¼ W†j0i ¼ jþi, one obtains pð00Þ ¼
pð10Þ ¼ 1=2 and pð01Þ ¼ pð11Þ ¼ 0. This predicts that the
probability of ending in the ground state, pð10Þ þ pð00Þ, is 1.
These results are in contrast with those predicted with the
TPM scheme, given by pð00Þ ¼pð01Þ ¼pð10Þ ¼pð11Þ ¼1=4,
which bear little resemblance to the factual evolution.
Conclusions.—Our results show that two physically

necessary properties of quantum work, namely, respecting
the classical limit and obeying the first law of thermody-
namics, cannot be simultaneously measured. As a conse-
quence, while the observation of work fluctuations does not
change thework output formacroscopic processes, this is no
longer true in quantum systems with coherence. This result
sheds light on the crucial role of measurements [25,44–49]
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and coherence [50–55] in quantum thermodynamics, and
seems to imply that there will probably never be an
equivalently universal notion of a work variable that is
independent of the context in quantum mechanics.
The basic reason behind this incompatibility is the

presence of quantum coherence, together with the back-
action induced by quantum measurements. In order to
decrease the backaction, we explored the possibility of
using collective measurements. Although we showed that
the no-go result remains valid for such globalmeasurements,
the set of describable coherent transformations increases. In
particular, using a measurement on two copies of the state,
we provided a new scheme that can approximately describe
the fluctuations in quantum coherent processes.
Future work also includes a comparison between the

methods developed here for describing the fluctuations of
work in coherent processes and other approaches in the
literature [11–16,25–29,56,57]. Also particularly interest-
ing are the results on fluctuations of work obtained in the
context of the resource theory of thermodynamics, where
the fluctuations of work are directly mapped upon the state
of an external work-exchange agent—the “weight” [56,57].
As a final remark, we note that the scheme (14) can be used
to approximately characterize the fluctuations of work in
work extraction processes from entangled states [58].
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