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A quantum mechanical transition path time probability distribution is formulated and its properties are
studied using a parabolic barrier potential model. The average transit time is well defined and readily
calculated. It is smaller than the analogous classical mechanical average transit time, vanishing at the
crossover temperature. It provides a direct route for determining tunneling times. The average time may be
also used to define a coarse grained momentum of the system for the passage from one side of the barrier to
the other. The product of the uncertainty in this coarse grained momentum with the uncertainty in the
location of the particle is shown under certain conditions to be smaller than the ℏ=2 formal uncertainty
limit. The model is generalized to include friction in the form of a bilinear interaction with a harmonic bath.
Using an Ohmic friction model one finds that increasing the friction, increases the transition time. Only
moderate values of the reduced friction coefficient are needed for the quantum transition time and coarse
grained uncertainty to approach the classical limit which is smaller than ℏ=2 when the friction is not too
small. These results show how one obtains classical dynamics from a pure quantum system without
invoking any further assumptions, approximations, or postulates.
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The transition path time distribution has received much
attention in recent years, especially in the context of protein
folding [1–5]. The distribution provides the probability that
a transition between two points in space of a molecular
system (the protein) will take a time t. The most recent
experiments of Neupane et al. have demonstrated that the
distribution is measurable [6]. Moreover, the fit to a
theoretical expression for the distribution was remarkably
good. The theory thus far has been classical mechanical in
nature, based on dissipative motion on a parabolic barrier
potential [3–5]. For proteins, the friction is strong, the
dynamics is well described within a Smoluchowski limit
where quantum effects are unimportant [7]. However, the
classical theory has raised the challenge of formulating a
quantum theory for the transition path time distribution.
This distribution is in principle a measurable quantity, for
example, by the experimentally implemented imaging of
a single atom in a time-of-flight experiment [8], albeit, the
spatial resolution is diffraction limited. A different
approach may be to measure recollision times in high
harmonic generation [9].
A second aspect of interest has to do with the concept of

time in quantum mechanics. The history of the definition
of time and a time operator in quantum mechanics is rich
[10–12]. It is of special interest in the context of tunneling
times, where various theoretical approaches have shown
that this time is either very small or vanishing [13–16].
Measurement of the tunneling time has remained, though,
an enigma as summarized in Ref. [17]: “the assumption that
tunneling has a well defined duration, …, would lead to a
contradiction.” A transition path time distribution could (as
shown below) provide a different paradigm for the study of
tunneling times.

Third, violations of the Heisenberg uncertainty principle
and its precise definition have been the topic of numerous
experimental and theoretical investigations in recent years
[18–20]. The transition path time distribution is also
relevant here. The average quantum time for the transition
between two points, may be used to define an averaged
coarse grained momentum for the transition. The natural
question to arise then is whether this coarse grained
momentum obeys any uncertainty principle.
In this Letter, we derive a quantum mechanical tran-

sition path time distribution for a parabolic barrier in the
presence of dissipation. For a one-dimensional parabolic
barrier (with barrier frequency ω‡) one finds that the
average transition time is a bell shaped function of the
inverse temperature β [with β ¼ 1=ðkTÞ]. It vanishes at
the so-called crossover temperature [21] for which
ℏβω‡ ¼ 2π. Introducing dissipation in the form of bilin-
ear coupling to a harmonic bath [22] allows one to study
the properties of the transition time distribution as a
function of friction. This provides a direct demonstration
of how friction affects a tunneling time [22]. One finds
that the average transit time is an increasing function of
the friction, reaching the classical limit already in the
moderate friction limit. This sheds light on the question
of how does a quantum system lose its quantum features.
The model studied in this Letter is exactly quantum
mechanical, yet when the friction is sufficiently large, the
particle behaves classically. The quantum transition path
time distribution provides a direct route from quantum
mechanics to classical mechanics, without resorting to
any external measurement process [23] or a theory of
collapse [24,25].
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The transition path time distribution for a one-
dimensional Hamiltonian Ĥ (hats denote operators) will
be defined as

Pðt; x; yÞ ¼ NTr

�
δðq̂ − yÞ exp

�
iĤt
ℏ

�
ρ̂ðxÞ exp

�
−
iĤt
ℏ

��
;

ð1Þ

where N is a normalization constant. ρ̂ðxÞ is a thermal
density operator localized around the point x

ρ̂ðxÞ ¼ exp

�
−
βĤ
2

�
δðq̂ − xÞ exp

�
−
βĤ
2

�
ð2Þ

chosen such that the transition path time distribution is
symmetric with respect to inversion of the points x and y
and such that it is positive for all times.
This present definition of the thermal distribution

[Eq. (2)] differs from the standard thermodynamic defi-
nition which in its symmetrized version is ρ̂SðxÞ ¼
1
2
½exp ð−βĤÞδðq̂ − xÞ þ δðq̂ − xÞ½exp ð−βĤÞ�. Elsewhere

[26] it is noted that the mean time of the distribution given
in Eqs. (1) and (2) is identical to the mean time obtained
using the standard definition for the thermal density. There
is also a direct relation between the higher moments of the
distributions based on the two definitions. The form used
here [Eq. (2)] has the distinct advantage that Pðt; x; yÞ is
positive for all times and so is a well-defined probability
distribution.
The thermal density defined in Eq. (2) is also directly

related to rate theory. Miller et al. [27] derived a thermal
left-side correlation function whose time derivative at long
times gives the reactive flux over a barrier. It is just a double
spatial integral of the correlation function of Eqs. (1)
and (2).
In this Letter, we first consider a one-dimensional

parabolic barrier Hamiltonian for a particle with mass M
and p̂, q̂ are the momentum and coordinate operators:

Ĥ ¼ p̂2

2M
−
Mω‡2q̂2

2
: ð3Þ

The parabolic barrier is ubiquitous for almost all reactions
occurring on a single adiabatic Born-Oppenheimer potential
energy surface and so has a special place in the theory of
chemical reaction dynamics. Not less important is that one of
the objectives of the present Letter is to consider a system
where one may derive analytic results without resorting to
approximations. This is especially important when consid-
ering the intriguing question of tunneling times.
Since the configuration space matrix element for the

propagator of quadratic Hamiltonians is known [28], one
readily finds (Nxy is the normalization constant)

Pðt; x; yÞ

¼ Nx;y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

sinh2ðω‡tÞ þ sin2ðβℏω‡

2
Þ

s

× exp

"
−
Mω‡ sin ðβℏω‡Þðx2 þ y2 − 2xy cosh ðω‡tÞ

cosðβℏω‡
2

Þ
Þ

2ℏ½sinh2ðω‡tÞ þ sin2ðβℏω‡

2
Þ�

#
: ð4Þ

To simplify, we will consider the symmetric case
ðy ¼ −xÞ. Using the reduced variables t ¼ ω‡t,
β ¼ βℏω‡, Q ¼ Mω‡2x2

2ℏω‡ (Q will be referred to as the reduced
barrier height) the symmetric distribution simplifies to

PsymðtÞ ¼ Nx;−x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

sinh2ðtÞ þ sin2ðβ
2
Þ

s

× exp

�
−4 sinðβ

2
ÞQ

½coshðtÞ − cosðβ
2
Þ�

�
: ð5Þ

The time-dependent distribution may then be used to
determine the nth moment of the distribution htnðx; yÞi ¼R
∞
0 dttnPðt; x; yÞ and the standard deviation hΔtðx; yÞi ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ht2i − hti2

p
. In the classical limit ℏ → 0 one finds the

symmetric normalized distribution

Psym;clðtÞ¼
2

sinhðtÞEið1;βV‡Þexp
�
−βV‡ coth2

�
t
2

��
ð6Þ

where Eið1; βV‡Þ is the exponential integral and V‡ ¼
Mω‡2x2=2 is the “barrier height” and βV‡ ¼ βQ.
The (reduced) average time of the transition as a function

of the inverse temperature β for the reduced barrier heights
Q ¼ 0.1, 1, 10 is plotted in Fig. 1. The dotted lines show
the respective classical values. Initially, decreasing the

FIG. 1. Average transition time for thermal motion over a
parabolic barrier. The solid (blue), dashed (purple) and dashed
dotted (red) lines correspond to a reduced barrier heightQ ¼ 10, 1,
0.1, respectively. The dotted lines show the classical average times
for each of the three cases. β ¼ ℏω‡=ðkBTÞ is the reduced inverse
temperature, the average time is dimensionless, in units of ω‡t.
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temperature increases the average transition time. This is
the expected classical result, as the barrier height βV‡

increases the transit time should increase. But when the
temperature is further lowered, tunneling kicks in and the
quantum transit time becomes shorter than the classical
going to 0 at the crossover point βc ¼ 2π. One finds that for
β ¼ 2π − ε, limε→0þhti ¼ −½π2=4 lnðεÞ� → 0.
For the thermal quantum parabolic barrier the averaged

transition time from one side of the barrier to the other has
two contributions. One is from above barrier energies with
times that are essentially classical. The other contribution is
from tunneling which occurs in vanishing time. At the
crossover temperature, one has tunneling contributions
from all negative energies and these dominate to give a
zero average tunneling time. In reality, one never has a
parabolic barrier extending to −∞ and one would have to
consider the effects of nonlinearity of the potential on the
transition time.
One may use the average time to estimate a coarse

grained momentum of the particle and its uncertainty
product. For the symmetric case of a transition from −x
to x this takes the form

hpi ¼ 2Mx
hti ; hΔpi ¼ 1

2

�
2Mx

hti − hΔti −
2Mx

hti þ hΔti
�
:

ð7Þ

The uncertainty in the position is hΔqi ¼ 2x. One may
then evaluate the uncertainty product

U ¼ 2xhΔpi
ℏ

¼ 8QhΔti
hti2 − hΔti2 ð8Þ

and ask whether U ≥ 1=2. This is shown in Fig. 2 where
the uncertainty product is plotted as a function of the
inverse temperature β for the reduced barrier heights
Q ¼ 1, 10. As in the previous figure, the classical values

of the uncertainty product are plotted as dotted lines. For
high temperature (small β), the quantum and classical
uncertainty products are similar. As the temperature is
lowered, the classical uncertainty becomes smaller and goes
below the 1=2 mark. For Q ¼ 10 the quantum uncertainty
also becomes less than 1=2 in the region where inspection of
Fig. 1 shows that the average transition time is maximal. At
lower temperatures, tunneling kicks in, the transit time
becomes shorter, and the uncertainty again becomes
larger than 1=2. Increasing the barrier height would further
increase the average transition time and thus reduce
even more the uncertainty product in the turnover region.
When considering coarse grained quantities, there is no
uncertainty limit.
We now introduce dissipation such that the system is

bilinearly coupled to a harmonic bath [22]:

Ĥ¼ p̂2

2M
þVðq̂Þþ1

2

XN
j¼1

�
p̂2
j þω2

j

�
x̂j−

ffiffiffiffiffi
M

p
cj

ω2
j

q̂

�2�
: ð9Þ

The jth harmonic bath oscillator has mass weighted coor-
dinate and momentum operators x̂j, p̂j and associated
frequency ωj. It is well known [22] that in the classical
limit, this Hamiltonian is equivalent to a generalized
Langevin equation, with the friction function γðtÞ ¼P

N
j¼1ðc2j=ω2

jÞ cos ðωjtÞ. Since the dissipative Hamiltonian
is quadratic, it may be diagonalized [29]:

Ĥ ≡ Ĥρ þ ĤB ¼ p̂2
ρ

2
−
1

2
λ‡2ρ̂2 þ 1

2

XN
j¼1

½p̂2
yj þ λ2j ŷ

2
j � ð10Þ

where the jth stable normal mode oscillator (with frequency
λj) has coordinate andmomentumoperators ŷj, p̂yj and ρ̂, p̂ρ

are the mass weighted coordinate and momentum operators
of the unstable normal mode. λ‡ is the unstable mode barrier
frequency, expressed in terms of the Laplace transform of the
time dependent friction [γ̂ðsÞ ¼ R∞

0 dte−stγðtÞ] as the pos-
itive solution of the Kramers-Grote-Hynes equation [30,31]

λ‡2 þ λ‡γ̂ðλ‡Þ ¼ ω‡2: ð11Þ

Some additional properties of the normal mode Hamiltonian
are that the projection u00 of the system coordinate (q) on the
unstable normal mode ρ is given in the continuum limit
through the relation [32]

u200 ¼
�
1þ 1

2

�
γ̂ðλ‡Þ
λ‡

þ ∂ γ̂ðsÞ
∂s

����
s¼λ‡

��−1
: ð12Þ

The spectral density of normal modes [33]

IðλÞ ¼ π

2

XN
j¼1

u2j0
λj

½δðλ − λjÞ − δðλþ λjÞ� ð13Þ
FIG. 2. The uncertainty product for a thermal parabolic barrier.
The notation is as in Fig. 1. The Q ¼ 0.1 case is not shown since
the uncertainty product is for all β much larger and outside of the
range of the figure.
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(uj0 is the projection of the system coordinate (q) on the jth
stable normal mode coordinate yj) may be expressed in the
continuum limit in terms of the Laplace transform of the
time-dependent friction by the relation [34]

IðλÞ ¼ λRe½K̂ðiλÞ� ¼ λRe½γ̂ðiλÞ�
ðω‡2 þ λ2Þ2 þ λ2γ̂ðiλÞγ̂ð−iλÞ : ð14Þ

The transition path time distribution is defined as in
Eqs. (1) and (2) except that now the Hamiltonian is the full
dissipative Hamiltonian of Eq. (10) and the Trace operation
is over all variables, system, and bath. We then use the
notations

Gc ¼
XN
j¼1

u2j0
λj

coth

�
βℏλj
2

�
−
u200 cosðβℏλ

‡

2
Þ

λ‡ sinðβℏλ‡
2
Þ
; ð15Þ

HsðtÞ ¼
XN
j¼1

u2j0 cos ðλjtÞ
λj sinhðβℏλj2

Þ
−
u200 cosh ðλ‡tÞ
λ‡ sinðβℏλ‡

2
Þ

ð16Þ

to find, after some manipulations and Gaussian integra-
tions, the result for the transition path time distribution in
the presence of friction:

Pdissðt; x; yÞ ¼ Ndiss

�
1

½H2
sðtÞ −G2

c�
�

1=2

× exp

�
−
M½Gcðy2 þ x2Þ − 2HsðtÞyx�

ℏ½G2
c −H2

sðtÞ�
�

ð17Þ

which for the symmetric case, simplifies to

Pdissðt;−x; xÞ ¼ Ndiss

�
1

½H2
sðtÞ −G2

c�
�

1=2

× exp

�
−

2Mx2

ℏ½Gc −HsðtÞ�
�
: ð18Þ

The continuum limit of Gc andHsðtÞ is readily obtained by
employing the spectral density of the normal modes so that
the sums are replaced by integrations over the variable λ.
The classical limit of the distribution is obtained by taking
the ℏ → 0 limit of Eqs. (15), (16), and (18).
To obtain further insight we consider the transition path

time distribution for Ohmic friction γðtÞ ¼ 2γδðtÞ where γ
is the friction coefficient and δðtÞ is the Dirac “delta”
function. The average (reduced) transition time hω‡ti is
plotted in Fig. 3 as a function of the reduced friction
parameter (γ=ω‡) for the barrier heightsQ ¼ 0.1, 1, 10, and
the (reduced) inverse temperature β ¼ 6. The respective
dotted lines show the classical average transition times for
the respective reduced barrier values βV‡ ¼ 0.6, 6, 60. For
β ¼ 6, one is very close to the crossover point (β ¼ 2π), so

that without dissipation, the average transit time at β ¼ 6
almost vanishes. Turning on the friction coefficient
increases the transit time, and as may be seen for moderate
to large friction, the magnitude of β is almost of no
relevance, the average transit time is very close to the
classical result. Perhaps most significant is the fact that it
does not take much friction for the quantum system to turn
classical. In all three cases shown in the figure, which span
2 orders of magnitude in (reduced) barrier heights, the
classical limit was more or less reached for (reduced)
friction coefficients of 3 or more.
The rapid approach to the classical transition time with

increasing friction indicates that the coarse grained uncer-
tainty would also be smaller than 1=2 as the friction is
increased. This is shown in Fig. 4 where the uncertainty
product [Eq. (8)] is plotted as a function of the friction
coefficient for the inverse temperature β ¼ 6 and the
barriers Q ¼ 0.1, 1, 10. The classical uncertainty is
represented by the dotted lines. The respective uncertainty
drops below 1=2 at γ ≈ 4, 3, 7. The quantum uncertainty is
always larger than the classical; however, as the friction
increases, the differences become small.

FIG. 3. Average transition time for thermal motion over a
parabolic barrier coupled to an Ohmic bath is plotted as a function
of the (reduced) friction parameter. Other notation is as in Fig. 1.

FIG. 4. The uncertainty product for a thermal parabolic barrier
coupled to an Ohmic bath is plotted as a function of the (reduced)
friction parameter. Other notation is as in Fig. 1.
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In summary, there are a number of results presented in
this Letter which are not specific to a parabolic barrier.
First, the usage of a thermal density correlation function
gives a precise determination of a transit time. In contrast
to our previous definition of time in terms of flux
correlation functions [35] where the flux correlation
function is complex, the present usage of a density
correlation function leads to a well-defined probability
distribution for all times. The resulting mean transition
times is a true mean. In the presence of tunneling, this
transit time is shorter than the classical transit time,
reflecting the fact that tunneling is either instantaneous
or very fast. Second, by defining a coarse grained
momentum one finds that even a quantum system may
be localized more than expected from the uncertainty
principle. Third, by coupling the system to a dissipative
bath we have seen that dissipation increases the transit
time, and tends to localize the quantum system.
Surprisingly, it does not take too much friction to
effectively turn the dynamics into classical.
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