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The reptation mechanism, introduced by de Gennes and Edwards, where a polymer diffuses along a fluffy
tube, defined by the constraints imposed by its surroundings, convincingly describes the relaxation of long
polymers in concentrated solutions and melts. We propose that the scale for the tube diameter is set by local
chain segregation, which we study analytically. We show that the concept of local segregation is especially
operational for confined geometries,where segregation extends overmesoscopic domains, drastically reducing
binary contacts, and provide an estimate of the entanglement length. Our predictions are quantitatively
supported by extensive molecular dynamics simulations on systems consisting of long, entangled chains.
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The celebrated reptation model, introduced by de Gennes
and Edwards, provides relatively simple insight into the
dynamics of long polymers in a concentrated solution or
melt [1–3]. The central idea is that the everpresent non-
crossing constraint allows chains to slide by each other, but
not to pass through. In this picture, one tagged chain in the
system moves under the constraints imposed by the sur-
rounding chains, which build “topological” obstacles called
entanglements (Fig. 1). An important parameter of the
model is the diameter rt of the reptation tube or the
associated average chemical distance (number of mono-
mers) between entanglements along a chain Ne ¼ ðrt=bÞ2,
with b the monomer size. The tube diameter is a material
parameter linked to the plateau modulus G ¼ kbT=r3t ,
which, together with the local friction coefficient, describes
many of the unique rheological properties of entangled
melts [4]. In practice, rt is between 3 and 10 nm for flexible
polymers [3].
The heuristic Lin-Noolandi ansatz defines the tube

diameter as the scale for which a given chain shares space
with a prescribed number ν of other chains (≈ 20 for all
flexible polymers [5]) [3,6,7]. This defines the length
rt ¼ ν=ðcb2Þ, which is a decreasing function of the mono-
mer concentration c. The “packing length” rp [8], intro-
duced as rp ¼ 1=ðcb2Þ, is hence expected to be the natural
scale of the problem. A compilation of numerical and some
experimental data by Everaers [9] also supports the idea that
the packing length and the tube diameter gained from the
plateau modulus are proportional to each other. It is inferred
that rp contains all the information about microscopic
details. Beyond, chains wrap in a universal way. The large
prefactor between rt and rp is somewhat puzzling. Recently,
it was shown that entanglements are essentially binary
[10–12] and further suggested [13] that a section
of length Ne builds up half of the concentration at its
center of mass. This specific argument leads to [14]
rt ¼ 8ð9=2πÞ3=2rp ≈ 14rp. A different dynamical approach

to the tube by Sussman [15] leads to a similar estimate. Two
recent studies ([12,16]) show that the dynamical approach
of the tube initiated by Likhtman [17] is compatible with the
approach by Everaers [9] (or Kröger [18] and Theodorou
[19]) and a knot-distribution entropy-based definition by
Qin and Milner [12]. Generalizing the concept of packing
length to confined geometries is not straight forward.
Instead, we consider local segregation between chains
analytically. Both concepts are essentially equivalent in
the bulk, but segregation is even enhanced in confined
systems. Disentanglement upon confinement was reported
from both simulation and experiment [20,21]. We will focus
on confinement in a slit of width h. Local chain segregation
turns out to extend over mesoscopic (lateral) distances,
which ultimately penalizes binary contacts (a fortiori sup-
pressing complex knots) and has a strong impact on mutual
entanglements, which was overlooked so far. Bringing a
monomer of a foreign chain close to a monomer of a given
chain costs some free energy related to the so-called
correlation-hole effect [2]. Below, energies are expressed
in thermal units kBT.

FIG. 1. Systems of polymer entanglements (a) in a bulk (b) in a
slit of width h. A labeled test chain (bold) and entangled similar
chains (thin) are shown. (c) An image of a confined polymer melt
obtained from a MD simulation of chain length N ¼ 1024, with
slit width h ¼ 9σ0. (See simulation description.)
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Let us first show this point on the simple case of a free
(unconfined) system Fig. 2(a). For a melt of long chains in
the incompressible limit, the interaction between monomers
a distance r > b apart is given by uðqÞ ¼ ðq2a2DÞ=ð2cÞ in
momentum space with q, Fourier conjugate of r, and
a2D ¼ b2=ð2DÞ a monomeric length,D being the dimension
of space [22] (also see Fig. 1(a) in Supplemental Material
[23]). It is then easy to show that for two infinite chains, say
black and white, the corresponding (integrated) interaction
UðrÞ when a distance r is imposed between a black and a
white monomer is Coulombic to lowest order in all
dimensions (see Fig. 1(b) in Supplemental Material [23]):

~UðqÞ ¼ 2kBT
q2a2Dc

; UðrÞ ¼ kBT
2πa2cr

for D ¼ 3; ð1Þ

where a ¼ a3. Finite size effects are not so essential in 3D
free space, but will turn out important in subsequent cases.
Here and below, we only consider the integrated interaction
between midpoints. The real space potential [Eq. (1)] is
multiplied by the cutoff function:

fcutðrÞ ¼ 2erfc

�
rffiffiffi
2

p
Rg

�
− erfc

�
r

2Rg

�
; ð2Þ

with Rg ¼
ffiffiffiffiffiffiffiffiffi
Na2

p
as a cutoff length. The cutoff entails a

shallow minimum at r ≈ 1.9Rg, which might induce a very
weak “colloidal” organization of the middle monomers of
the chains. The foreign monomers (say white) typically
approach a given monomer of a labeled chain (say black)
down to distance rwhereU reaches the thermal energy kBT.
At shorter distances, a monomer of a given chain is merely
surrounded by monomers of the same chain. This criterion
defines the scale of “segregation length” as below:

rs ¼
1

2πa2c
: ð3Þ

Strictly speaking, Eq. (1) is accurate for r≳ rs, where the
interaction does not exceed kBT. At this stage, our approach
is nothing but an alternative, admittedly more complicated,

way to obtain the length scale rp (together with the
distribution of foreign monomers).
Because theCoulomb interaction is longer ranged at lower

dimensions, we expect segregation to be enhanced by
confinement. In the general case of a cavity, the Laplace
operator−a2Δ admits eigenvalues ϵn and eigenfunctionsψn,
defined for the generic reflecting (von Neumann) boundary
conditions [24]. In lower dimensions, Coulombic inter-
actions are sensitive to the system size and we keep track
of the finite chain sizeN. For simplicity, we fix the two chain
midpoints at rA and rB and calculate the interaction including
the uniform ground state with ϵ0 ¼ 0:

UðrA; rBÞ ¼
X
k

2
ð1 − e−ϵkN=2Þ2

cϵk
ψkðrAÞψkðrBÞ; ð4Þ

where the eigenfunctions are normalized to thevolume of the
cavity. In free space, the ψk are plane waves, and we recover
the previously used residual interaction. For infinite chains,
the interaction given by Eq. (4) is proportional to the Green
function for electrostatics with reflecting boundaries, and the
electrostatic analogy formally holds.
Let us now consider two chains (A) and (B) in a melt of

similar chains filling the half space z > 0 [Fig. 2(b)]. The
positions of the constrained monomers are designated by
rAfzA; ρA ¼ 0g and rBfzB; ρB ¼ ρg in cylindrical coordi-
nates. By analogy with electrostatics, and accounting for
the image charge of the same sign, we write the integrated
interaction:

U1=2ðρ; zA; zBÞ ¼ U
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ z2−

q �
þ U

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2þ

q �
; ð5Þ

where z− ¼ zA − zB and zþ ¼ zA þ zB. For finite chains,
each of the U functions in Eq. (5) comes with the cutoff
function, Eq. (2). Equation (5) merges with the interaction
in the bulk at large distances from the wall. Very close to the
wall (zA ¼ 0), the exclusion zone defined from Eq. (5) by
U1=2 ¼ kBT is a half sphere of radius 2rs. (See also Fig. 2
in Supplemental Material [23].) Away from the wall, the
exclusion zone elongates perpendicular to the wall and
detaches from the wall for zA ¼ 2rs. The bulk exclusion
zone is recovered at zA ≈ 5rs. It is natural to characterize
the exclusion zone by the area of its generating section,
which becomes πr2s in the bulk and is doubled at the wall.
These results are qualitatively equivalent to earlier findings
by Brown [25], using the qualitative packing argument and
more recently, by Qin [26]. Equation (5) can be also
recovered as a limiting case of confinement in a slit
discussed below.
For a slit of width h [Fig. 2(c)], the two in-plane

directions are invariant by translation and ϵk ¼ q2∥a
2þ

π2n2a2=h2, where n runs over the natural numbers,
including zero. After taking the Laplace transform with
respect to N, the series in Eq. (4) can be summed up as:

FIG. 2. Integrated interaction U between chains when a
separation r is imposed between a monomer A of one chain
and a monomer B of the other chain in various geometries: (a)
bulk, (b) a half-space with von Neumann boundary conditions,
(c) a slit of width h where A and B are located at z ¼ h=2.
Momentum q is circulating in the upper loop: each polymer line
(solid blue) carries a factor 1=ðq2a2Þ; a red dashed line carries an
interaction u. This leads to the Coulombic ~UðqÞ in Eq. (1). More
details are given in the Supplemental Material [23].
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Uslit ¼
1

pca2
f2fð2p=a2Þ − fðp=a2Þg; ð6Þ

with fðxÞ ¼ fþðxÞ þ f−ðxÞ and

f�ðxÞ ¼
cosh ½ðq2∥ þ xÞ1=2ðh − jz�jÞ�
ðq2∥ þ xÞ1=2 sinh½ðq2∥ þ xÞ1=2h� ;

where p is the Laplace conjugate of N. The interaction
Eq. (6), calculated in the middle of the slit, (see Fig. 1(d) in
Supplemental Material [23]), exhibits several regimes
summarized in Fig. 3. The interaction between midmo-
nomers of two chains embedded in a melt of similar chains
is essentially Coulombic. Close to a wall, we must account
for the image charge of the same sign. In a slit of width h,
the interaction is 3D at distances shorter than h= logðRg=hÞ
and 2D at distances larger than h. As long as rs belongs to
the 3D regime, Eq. (3) holds. Finite chain length entails
screening of the interaction beyond a distance Rg. At
intermediate distances between h and Rg, Rg defines the
cutoff length of the logarithmic interaction. We shall
consider 2D coarse-grained (CG) chains comprising CG
monomers of diameter h and monomer content h2=b2.
At distances larger than h, the system merely behaves as

2D polymers with crossings [22,27]. Beyond perturbation,
the crossing probabilities are given by the vertex exponents
σf ¼ fð2 − fÞ=4, with fð≥ 1Þ the order of the vertex
[22,27]. The partition function of a network factorizes in
vertex and loop contributions [28]. For a network com-
posed of strands of size n, each vertex contributes a factor
ð1þ κ lognÞσf to the partition function, with κ ¼ rs=ð2hÞ
the Ginzburg parameter, which characterizes tube confine-
ment, and each (independent) loop contributes a factor
b2=R2

e, with R2
e ¼ nb2ð1þ κ log nÞ [29]. For example, the

partition function of a simple cross between two 2D chains
of length n is Z4 ∼ f1þ ½rs=ð2hÞ� log ng−2. To make
connection with Fig. 3, we can express the fraction of
foreign (coarse-grained) monomers at a distance ρ from a
given (coarse-grained) monomer [22,27]

PðρÞ ¼
�

1þ rs
2h logðρ2=h2Þ

1þ rs
2h logðNb2=h2Þ

�
2

: ð7Þ

This generally applies and matches the perturbative 2D
expression of Uslit (Fig. 3).
As long as h ≫ rs logðNb2=h2Þ, the CG monomers

freely mix and the 3D situation holds, up to single wall
effects [25]. Beyond perturbation, contacts between CG
chains are strongly reduced, although CG monomers of
extension h strongly overlap for h > rs. Each CG monomer
lives in a 3D environment and experiences binary entan-
glements with overlapping CG monomers. As a result, the
number of mutual entanglements is proportional to the
fraction PðhÞ of mutual contacts (contacts with foreign
chains). Confinement hence reduces the number of mutual
entanglements by a factor PðhÞ. Accordingly:

NeðhÞ ≈ Ne

�
1þ rs logðNb2=h2Þ

2h

�
2

: ð8Þ

The 3D regime (and 3D type entanglements) are lost for
h < rs. This ultraconfined regime may only be relevant to
concentrated solutions where rs is larger than in the strict
melt. Now, a sharp cut border between segregation and
mixing is somewhat arbitrary. Seeking for the distance ρ,
where the probability to find a foreign monomer is P, we
obtain:

ρ

h
¼ e−hð1−

ffiffi
P

p Þ=ð2rsÞ
�
Nb2

h2

� ffiffi
P

p
2

: ð9Þ

We may choose P ¼ 1=e as the value at the border, which
corresponds to our previous criterion U ¼ kBT. For strong
confinement h < rs, a given chain expels foreign mono-
mers out of a ribbon of width ρ ∼ ðNa2=h2Þð1=2 ffiffi

e
p Þh

increasing with chain length. For h > rs, the width of
the ribbon strongly decreases with h and qualitatively
matches h for the gap width h ∼ rs logN.
Even when a given polymer is softly confined to an ill-

defined ribbon [Eq. (9)], it still can hook with other chains,
forming scarce entanglements involving (at least) coarse-
grained double contacts. More complex entanglements (or
knots) involving higher order vertices are scarcer. At any
time, constraints are materialized by tight hooks (see
Fig. 4). It is assumed that their average number can be
obtained from the ensemble average. Their abundance is
quantified by the hook partition function given in Eq. (10)
below. The derivation of the hook partition function Zh
[Eq. (10)] step by step, starting from simpler hooks, is
detailed in the Supplemental Material [23]. It is convenient
to work with reduced chemical distances ~n ¼ nb2=h2,
counted in units of blobs. We will restore natural units
in the final discussion. After integration of the partition
function Z (see Table in Supplemental Material [23]) over

FIG. 3. Interaction Uslit in the midplane of the slit as a function
of the lateral distance ρ: crossover from the 3D regime to the 2D
regime with UðhÞ ¼ rs=h. The interaction is nearly constant in
regime (II). The cutoff beyond Rg is discussed in the Supple-
mental Material [23].
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~n1 from 0 to ~n2, the partition function of a single hook of
size n ∼ n2 between two chains is given by:

Zh ∼
�
1þ rs

2h
log

Nb2

h2

�−2�
1þ rs

2h
log

nb2

h2

�−3
; ð10Þ

where σ4 ¼ −2 has been inserted. As discussed above, the
hook should be tight and ~n remain almost of order unity.
For strong polymer confinement rs > h, where CG mono-
mers do not typically overlap, the partition function Zh
allows us to directly assess the average distance between
hooks along a given chain NhðhÞ ∼ ðh2=b2Þ=Zh,

NeðhÞ ∼
r5s

b2h3
½logðNb2=h2Þ�2; ðrs > hÞ: ð11Þ

To test our main prediction, Eq. (8), large scale MD
simulations were set up using the same bead-spring model
as in Refs. [20,32]. The MD has been combined with a
double-bridging algorithm [33–35] to accelerate decorre-
lation of configurations for the sampling of static proper-
ties. Only the use of the double-bridging moves made it
possible to obtain reliable statistics up to chain length
N ¼ 2048. The simulation box comprises at least 96
chains. The gap width ranges from twice the radius of
gyration Rg to about 4 monolayers thick. Below, we focus
on the confined regime h < Rg. In the simulation, Rg

amounts to ≈17.5σ0 for N ¼ 1024 and ≈24.5σ0 for
N ¼ 2048, with σ0 the bead diameter. We present only
data for N ¼ 1024 and N ¼ 2048, which still exhibit a few
entanglements in the thinnest film. To reveal the mutual
entanglements, we adapted the stretching procedure [9],
introduced by Everaers. From the analysis of the entangle-
ment network, we obtain the entanglement lengths NeðhÞ
for the various gap widths, h. NeðhÞ is preaveraged over a
group of twelve configurations for each h. The results of the
(typically 3) determinations were further averaged and the
dispersion among different determinations is displayed as
precision in data shown in Fig. 5. The standard bulk value
of the entanglement length Ne was measured separately;
the stretching procedure delivers a value slightly increas-
ing, with chain length designated as Nbk

e below.

The obtained values of NeðhÞ are plotted against h in
Fig. 5, which clearly shows an increase of NeðhÞ upon
confinement. Note that previously published simulation
studies have been limited to weakly entangled (N ¼ 256)
bulk chains [20] and accordingly, reported complete disen-
tanglement upon strong confinement. In contrast, we
observe gradual disentanglement: the gap width decreases
by a factor 5 and the entanglement length is tripled. Tomake
direct connection with Eq. (8), we present scaled data in
the inset of Fig. 5, as was done for the in-plane radius of
gyration squared in Ref. [31]. In the scaling plot, we show
log-log plot of ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Neðh;NÞ=Nbk

e ðNÞ
p

− 1Þ versus the cou-
pling ðσ0=h̄Þ logðNb2=h̄2Þ. The gap thickness h̄, smaller
than h by 1.08σ0, accounts for depletion effects as discussed
in Supplemental Material [23]. Adjusting the strength of the
coupling amounts to a vertical shift in this representation.
The data for both chain lengths N ¼ 1024 and N ¼ 2048
collapse on a straight line parallel to the bisector, which is
consistent with the prediction Eq. (8). The retained value of
the y intercept −0.40 corresponds to the coupling strength
e−0.40 ≈ 0.67, which is somewhat larger than the estimate
from the Edwards model (see Eq. (3) and Supplemental
Material [23]), rs=ð2σ0Þ ≈ 0.45 for the raw simulation
parameters (c ¼ 0.68σ−30 , b2 ¼ 1.8σ20). The current plot
covers about one decade in the scaling variable, which is
sufficient to confirm the slope 1.
We focused on interchain entanglements, which are most

relevant to rheological types of experiments (see Ref. [36]).
We predict a drastic reduction of mutual entanglements
upon confinement. This can be formally understood as
being on the way to strict 2D where there are no
entanglements at all and chains are completely segregated
(with a fractal border) [22]. Our prediction is quantitatively

FIG. 4. Statistical weight of a hook between two chains in a slit
(2D regime), n1 < n2 < N. The partition function Zh of a hook
between two chains is obtained step by step from that of simpler
hooks (see Supplemental Material [23]).

0 10 20 30
h/σ0

100

200

300

400

N
e(h

)

-3 -2 -1 0

log[σ0 /h log(Nb
2
/ h

2
)]

-3

-2

-1

0

lo
g 

[(
N

e(h
)/

N
ebk

)1/
2 -1

]

Slope =1

FIG. 5. Measured value of NeðhÞ from MD simulation of long
polymer chains (△ N ¼ 1024, ∘ N ¼ 2048) in gaps of various
width h. Empty symbols are independent realization and solid
symbols represent the averaged value for each h. In the
inset,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NeðhÞ=Nbk

e

p
− 1 versus ðσ0=h̄Þ logðNb2=h̄2Þ is plotted

in log scales. The size of the symbols (≈0.1) reflects the precision
of the data (≈10%).
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supported by extensive MD simulation for the system of
long entangled polymer chains (N ¼ 1024 and 2048).
Currently available experiments on free standing films
do not explore films much thinner than the radius of
gyration in the bulk [36].
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