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Manipulating qubits via electrical pulses in a piezoelectric material such as GaAs can be expected to
generate incidental acoustic phonons. In this Letter we determine theoretically and experimentally the
consequences of these phonons for semiconductor spin qubits using Landau-Zener-Stückelberg interfer-
ometry. Theoretical calculations predict that phonons in the presence of the spin-orbit interaction produce
both phonon-Rabi fringes and accelerated evolution at the singlet-triplet anticrossing. Observed features
confirm the influence of these mechanisms. Additionally, evidence is found that the pulsed gates
themselves act as phonon cavities increasing the influence of phonons under specific resonant conditions.
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Gated quantum dot devices are promising candidates for
quantum information processing. Encoding the information
can provide individual qubit addressability, all-electrical
operation, and robustness against decoherence related to
the hyperfine interaction or random charge instabilities
[1,2]. Coherent control of such coded qubits has recently
been demonstrated in double-dot [2–6] and triple-dot
systems [7–10].
In the piezoelectric GaAs=AlGaAs system, charge fluc-

tuations may be expected to lead to phonon generation.
Phonons believed to originate from inherent charge fluctua-
tions in nearby quantum point contacts were recently shown
to interact coherently with confined electrons in double and
triple quantum dot devices [11–13]. In this Letter we study
the influence on the qubit state dynamics of phonons
generated by the very pulses used to manipulate the qubits.
We focus on the two-electron singlet-polarized triplet (S=Tþ)
system and probe it with Landau-Zener-Stückelberg (LZS)
interferometry [4,7]. The two states are coupled by hyperfine
interaction with nuclear spins. We drive the S=Tþ system
through the resulting anticrossing with a detuning pulsewith
a very short rise time, for which the LZS interference pattern
is not expected. This pulse is translated into a nontrivial
population of high-energy acoustic phonons as a result of the
piezoelectric effect. These phonons provide a resonant
coupling mechanism between S and Tþ via the electron-
phonon and spin-orbit interactions. We expect that the
resulting S=Tþ dynamics will be modified from its usual
LZS pattern by effects depending on the occupations of the
phonon modes. Here we show that the phonon coupling
(i) accelerates the dynamics of the S=Tþ system close to the
hyperfine anticrossing, manifesting as an apparent increase
of the gap, (ii) creates new LZS interference fringes away
from the anticrossing, and (iii) in case of cavity phonon
modes, leads to the appearance of discrete resonances when
the S=Tþ energy separation equals the energy of the cavity
phonon.

Figure 1(a) shows the gate layout of our lateral triple dot
device.Details of previous LZS experimentswith our sample
are given elsewhere [7,8]. The gates are tuned to a double
dot regime in which two electronic configurations, with
electron numbers ðNL;NC; NRÞ ¼ ð1; 1; 1Þ and (2,0,1), are
close in energy and an electron in one of the dots (white
circle) acts as a spectator.We classify the energy levels by the
total spin of the two “active” electrons as S (singlet) and Tþ
(polarized triplet). The system is pulsedby applyingdetuning
voltages dV1 and dV2, opposite in sign, to gates 1 and 2,
respectively. Figure 1(b) plots the experimentally calibrated
energy diagram of the system as a function of detuning
ΔVðdV1; dV2Þ [7,8]. A magnetic field B ¼ 200 mT was
used. Ignoring the trapped electron in the right-hand dot,

FIG. 1. (a) Scanning electron micrograph of the gates compos-
ing the triple-dot gated lateral device. The sample is maintained at
the temperature of ∼80 mK. The S=Tþ system is set up with the
left-hand and middle dots, while the right-hand dot is inert in
the relevant range of detunings. The detuning pulse is applied to
the gates 1 and 2. (b) Energy of the singlet S and polarized triplet
Tþ as a function of the detuning between the left-hand and center
dots. Blue lines indicate detunings corresponding to absorption
of phonons with energy being a multiple of 1.3 μeV. Red circles
show the energies extracted from Fig. 4 (a) (see text for
discussion).
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the triplet state Tþð1; 1Þ is a configuration containing one
electron per dot, with both electrons in a spin up state. Its
energy,ET , is the reference level in Fig. 1(b). The singlet state
is a linear combination of two configurations: Sð2; 0Þ, with
two electrons in the left dot with antiparallel spins, and
Sð1; 1Þ with one electron per dot. Because of interdot
tunneling, the singlet energy ES can be tuned with respect
to ET by gate voltages dV1, dV2, as evident in Fig. 1(b).
Following Taylor et al. [2], we describe our two-level

system with the effective Hamiltonian

Ĥ0 ¼
�

ES ΔBX

ΔBX ET

�
: ð1Þ

Here, ΔBX ≈ 0.1 μeV is the effective singlet-triplet cou-
pling due to hyperfine interaction with the nuclear spins of
underlying material. This coupling leads to the small
anticrossing of S and Tþ levels visible in Fig. 1(b). The
derivation of Eq. (1) is given in Ref. [14].
In the LZS interferometry experiment [7] the system

is prepared in the S state in the regime where ES < ET .
Next, the detuning pulse of duration τ is applied,
casting the system in a time-dependent state jΨðtÞi¼
α20ðtÞjSð2;0Þiþα11ðtÞjSð1;1ÞiþβðtÞjTþð1;1Þi. The accu-
mulation of amplitudes and phases is analyzed via spin-to-
charge conversion by measuring jα2;0j2 after the pulse by
the charge detection technique [18]. The amount of mixing
due to hyperfine coupling depends on the pulse rise time τs,
which must be comparable to ∼ℏ=2ΔBX for LZS interfer-
ence to be observable. A faster pulse nonadiabatically
drives the system through the anticrossing resulting in
βðtÞ ≈ 0 throughout.
The phonon-mediated S=Tþ coupling is due to the

spin-orbit (SO) interaction, connecting the Sð2; 0Þ and
Tþð1; 1Þ configurations. The SO Rashba [19] and
Dresselhaus [20] couplings are characterized respectively
by the Hamiltonians [21] ĤR ¼ αSOðσ̂xp̂y − σ̂yp̂xÞ and
ĤD ¼ βSOðσ̂yp̂y − σ̂xp̂xÞ, with αSO and βSO being material
parameters, and p̂i, σ̂i being the ith component of the
momentum and spin operators, respectively. Here, the
spin flip occurs as the electron tunnels between dots. SO
interactions enhance the S=Tþ hyperfine gap by renorm-
alizing the term ΔBX in Eq. (1) [14]. The interplay of the
two couplings in S=Tþ dynamics has been examined
experimentally [5].
Electron tunneling is enabled by the bath of acoustic

phonons. We account for it by introducing two additional
Hamiltonian components Ĥph þ Ĥe−ph ¼

P
~qεðqÞb̂þ~q b̂~qþP

~q

P
ijσ Mijð~qÞðb̂~q þ b̂þ−~qÞĉþiσ ĉjσ. The first term introdu-

ces the energies of quantized phonons, and we take the
phonon energy εð~qÞ ¼ ℏvsj~qj, where vs is the two-
dimensional speed of sound at the sample heterointerface,
and b̂þ~q (b̂~q) is the creation (annihilation) of the two-

dimensional phonon with wave vector ~q. The second term
describes electron-phonon coupling, involving electron

scattering (without spin flip) accompanied by absorption
or emission of a phonon, with ĉþiσ (ĉiσ) being the creation
(annihilation) operator of an electron in dot i with spin σ.
This Hamiltonian is scaled by the matrix element Mijð~qÞ
(Refs. [21,22]), whose form (piezoelectric or deformation)
is discussed elsewhere [14]. Here we emphasize the
existence of the element MLRð~qÞ enabling the phonon-
assisted tunneling between dots.
The phonon population nðεÞ due to the pulse is estimated

phenomenologically as proportional to the Fourier trans-
form of the pulse. The inset in Fig. 2(a) shows this
transform for pulse rise times τs ¼ 1 ns (black) and 2 ns
(red), as a function of energy scaled by the deformation-
type phonon coupling. The realistic Gaussian profile of
pulse edges was taken [23]. Shorter pulse rise times result
in a higher average phonon energy and an increase of the
population of higher-energy modes. The fast oscillations
are due to the pulse length (τ ¼ 25 ns was used). Evidently,
the pulse results in a nontrivial phonon population over
a large energy range, which prohibits us from treating
phonons as quantized particles. Instead, in the Hamiltonian
Ĥ0 we replace the static term ΔBX by a time-dependent
coupling ΔBXþ

P
ωℏωnðωÞAðωÞsinðωtÞ. We decompose

nðωÞAðωÞ ¼ A0MðωÞζðωÞ, where A0 is a phenomenologi-
cal phonon strength parameter, MðωÞ is the phonon

FIG. 2. LZS interference calculated for the S=Tþ system in the
bath of phonons. (a) Model electron-phonon coupling elementM
reflecting the phonon mode population at pulse rise time
τs ¼ 1 ns. Inset: Phonon energy resolved strength of electron-
phonon coupling via the deformation potential computed using
the Fourier transform of the pulse with duration τ ¼ 25 ns for rise
times 1 ns (black) and 2 ns (red). Grayscale plots of derivative
dP=dV1 of the probability of finding the system in the singlet
state as a function of detuning at pulse maximum (relative to
S=Tþ anticrossing) and pulse duration for phonon strength factor
A0 ¼ 0.1 (b), 0.5 (c), and 2 (d). The pulse rise time τs ¼ 1 ns.
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population multiplied by energy-dependent material
parameters (related to the electron-phonon coupling
elementMLR discussed earlier), and ζðωÞ is the SO-related
spectral factor describing the relative content of singly- and
doubly-occupied configurations in the electronic states
[14]. Figure 2(a) shows the energy dependence of the
factor MðωÞ for the pulse rise time τs ¼ 1 ns.
Now we demonstrate that the presence of phonons

accelerates the S=Tþ dynamics at the hyperfine anticross-
ing. We prepare our system with ES ¼ ET (no pulse) and
derive the singlet probability of the driven Rabi system as
jhSjΨðtÞij2¼ cos2½ΔBXt=ℏþ

P
ωnðωÞAðωÞ(1−cosðωtÞ)�,

assuming an initial state jSi. In the absence of phonons this
evolution reduces to the free Rabi flopping in the hyperfine
field at the anticrossing. The presence of phonons modifies
this time evolution increasingly as the phonon population
nðωÞ increases. In particular, we find that as the LZS pulse
drives the system through the anticrossing region, its state
evolves into an S=Tþ superposition faster than it would in
the hyperfine field alone. Thus, in the presence of the
phonon bath the system behaves as if the effective gap
accompanying the S=Tþ anticrossing were increased. To
demonstrate this, we have solved numerically the time-
dependent problem [7] dϱ̂ðtÞ=dt ¼ i½ϱ̂ðtÞ; Ĥ=ℏ� with the
density matrix ϱ̂ðtÞ and the effective Hamiltonian account-
ing for the pulse. We choose the pulse rise time τs ¼ 1 ns,
and only take into account the phonon mode with energy
equal to the S=Tþ gap corresponding to the detuning when
the pulse is at its peak. In Fig. 2 we show the singlet
probability amplitude as a function of detuning at pulse
maximum (vertical axis, relative to the position of S=Tþ
anticrossing) and pulse duration τ (horizontal axis) for
A0 ¼ 0.1 [(b), almost no phonons], A0 ¼ 0.5 (c), and A0 ¼
2 (d). We see a near absence of the LZS pattern in the first
case, while the increase of phonon population leads to a
strong reappearance of the LZS pattern.
In the left-hand panels of Fig. 3 we plot experimental

LZS interference traces for different pulse rise times as a
function of detuning at maximum and duration τ of the
pulse. With a constant S=Tþ anticrossing gap and no
phonon effects, we would expect the LZS oscillations to
disappear as τs is decreased. We observe dramatically more
complex behavior. To reproduce the experimental obser-
vation of LZS spectra in numerical simulations without
adding SO or electron-phonon coupling, it is necessary to
increase artificially the anticrossing gap Δ as τs is
decreased. The results of these simulations are shown in
the right-hand panels of Fig. 3. While for long pulse rise
times [Figs. 3(a) and 3(b)], the effective gap is equal to the
hyperfine gap, Δ ¼ 2ΔBX ¼ 0.2 μeV, for the shortest rise
time, τs ¼ 0.2 ns, this apparent gap needs to be increased to
Δ ¼ 0.66 μeV. This demonstrates the speeding up of the
coherent S=Tþ dynamics by phonon modes and the
corresponding persistence of the LZS oscillations. We note
that in Fig. 3 the position of the anticrossing does not

change, which confirms that dynamic nuclear polarization
does not play any role in these new phenomena.
Now we focus on the region of negative detunings (lower

part of the LZS graphs). Here, the simulations not including
phonons, shown in Fig. 3, predict weak interference fringes,
while both experiment and time-dependent simulations
including SO-phonon effects shown in Fig. 2 reveal strong
features, which differ from the regular LZS oscillations. The
new features arewhite traces in the experimental diagrams of
Fig. 3 and are emphasized by red dashed lines in Fig. 4(a).
Specifically, in Fig. 3, for τs ¼ 4 ns we see only LZS
oscillations, while for τs ¼ 2 ns the lowest edge of the
pattern breaks into two stripes, for τs ¼ 1 ns—into three, and
for τs ¼ 0.2 ns there are four stripes. In Fig. 4(a) the stripes
are evenmore numerous. The new fringes can be understood
from the effective Hamiltonian taken atES ≪ ET . The states

FIG. 3. LZS oscillations revealed by the singlet amplitude
observed in experiment (left-hand panels) and calculated (right-
hand panels) as a function of the duration and detuning at
maximum of the pulse for the pulse rise times τs ¼ 4 ns (a),(b),
2 ns (c),(d), 1 ns (e),(f), and 0.2 ns (g),(h). The time delay
between consecutive pulses was Tm ¼ 2 μs. The calculations did
not include phonon effects, but were performed with a varying
hyperfine gap Δ. Black arrows mark the horizontal resonances
due to discrete phonon modes.
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jSi and jTþi are then mixed only by the SO-phonon
mechanism, and we have the Rabi problem, exhibiting a
Lorentzian resonance for phonon energy ℏωq ¼ jES − ET j.
At this energy, the singlet probability is jhSjΨðtÞij2 ¼
cos2 ½ωqnðωqÞAðωqÞt� for a system at t ¼ 0 in the state
jSi. This interference process, driven by the phonon pop-
ulation and electron-phonon coupling, is absent in the
conventional LZS experiment. Since the phonon bath has
continuous distribution of mode energies, for any relevant
pulse amplitude there will exist a resonant phononmode and
the system will experience resonant Rabi driving. Note the
corresponding new fringes for positive detunings are
obscured by regular LZS oscillations leading to the asym-
metric appearance of features around zero detuning. As
described above, LZS oscillations are observed at short pulse
rise times due to the influence of the phonons on the
dynamics of the system at the anticrossing.
The third signature of phonons is seen experimentally as

horizontal fringes, denoted by black arrows in Fig. 3(g),
and yellow stripes in Fig. 4(a). In Fig. 1(b) we mark their
positions as red circles on the experimentally calibrated
S=Tþ energy diagram. They correspond well to an equally
spaced ladder of energies on either side of the anticrossing,
with spacing εLOC ¼ 1.3 μeV (the vertical blue lines). With
phonon velocity vs ¼ 2.7 × 109 μm=s, these energies cor-
respond to phonon half-wavelengths being integer fractions
of LLOC ¼ 4.3 μm. In our sample layout in Fig. 1(a) we
find the narrow components of the pulsed gates marked in
green are approximately of length LLOC [14]. Thus, these
gates appear to act as phonon cavities producing discrete
phonon modes which couple to our electronic system. For
detunings for which the singlet-triplet energy gap is a
multiple of εLOC, the LZS interferometry produces a
phonon-assisted singlet-triplet resonance. To model these
resonant features, we assume a localized phonon modewith
the momentum ~Q, energy εð ~QÞ, and occupation nð ~QÞ. We
use the Hamiltonian Ĥ ¼ Ĥ0 þ ĤSO þ Ĥph þ Ĥe−ph in the

quantized phonon picture. Through the second-order
SO-phonon process, this mode creates a resonance when
the energy of the state jSijnð ~QÞi is equal to that of
jTþijnð ~QÞ − 1i or jTþijnð ~QÞ þ 1i, depending on the
ordering of energies. We expect a signature of this
incoherent phonon absorption or emission process appear-
ing at the detuning for which jES − ET j ¼ εð ~QÞ irrespec-
tively of the duration of the pulse, so long as the mode ~Q is
populated. To confirm this, we performed numerical
simulations of the LZS interference in the presence of
localized phonon modes, but omitting the phonon bath. The
result is shown in Fig. 4(b). We recover the horizontal
features at detunings corresponding to experiment although
the weak 3εLOC peak indicated by the dashed yellow line is
not observed.
To demonstrate experimentally that all the new features

are indeed related to phonons generated by the pulse, we
measure LZS oscillations with a constant rise time
τs ¼ 1 ns, but vary the time delay Tm between consecutive
pulses allowing phonon diffusion and dissipation to sup-
press the buildup of the phonon population. Figure 5 shows
the resulting LZS diagrams. For short times Tm we observe
the complex pattern discussed previously. As Tm becomes
longer, the phonons have enough time to dissipate, leading
to the gradual disappearance of the LZS pattern. For the
longest time Tm we recover the result expected in the

FIG. 4. (a) LZS oscillations measured with the rise time
τs ¼ 1 ns and the time between pulses Tm ¼ 0.5 μs. Red dashed
lines: interference pattern resulting from driving by the phonon
bath away from S=Tþ crossing. Yellow lines: fringes due to the
discrete phonon modes. The strong line in the top part is an
experimental artifact. (b) LZS oscillations calculated with local-
ized phonon modes, but no phonon bath.

FIG. 5. LZS oscillations measured with a constant pulse rise
time τs ¼ 1 ns, as a function of the delay between pulses Tm, for
Tm ¼ 1 μs (a), 5 μs (b), 10 μs (c), 20 μs (d), 40 μs (e), and 80 μs
(f). The line appearing near the top of panel (a) is an experimental
artifact.
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absence of phonons for this rise time. The long dwell time
near the S=Tþ system (tens of μs) suggests that the phonons
undergo multiple reflections from the edges of the sample
(∼3 mm away from the confined electrons) before their
energy dissipates [24].
In conclusion, we have demonstrated theoretically and

experimentally the consequences of phonons generated by
the very pulses used to manipulate spin qubits in gated
AlGaAs=GaAs quantum dots in combination with the spin-
orbit interaction. Our results indicate that under these
commonly achieved experimental conditions we observe
coherent hybrid interplay between phonon and spin quan-
tum platforms. Existence of spin-nonflipping SO terms [25]
is expected to enable a similar mechanism in S=T0 two-
electron, and (2,1) charge-spin hybrid systems [26]. In
(1,1,1) exchange-only qubits, both logical qubit states have
the same total spin [8,27], opening the possibility of
dynamical driving by phonons alone. These effects need
to be taken into account in the design of quantumcircuits and
interpretation of results, and may lead to new experimental
manipulation possibilities. Incoherent effects related to
phonon cavity modes were also observed and discussed.

We acknowledge useful discussions with G. Platero,
H. Ribeiro, and W. Coish. We thank Z. Wasilewski for the
sample wafer and P. Zawadzki for technical assistance with
cryogenics.

[1] D. Bacon, J. Kempe, D. A. Lidar, and K. B. Whaley, Phys.
Rev. Lett. 85, 1758 (2000).

[2] J. M. Taylor, J. R. Petta, A. C. Johnson, A. Yacoby, C. M.
Marcus, and M. D. Lukin, Phys. Rev. B 76, 035315 (2007).

[3] J. R. Petta et al., Science 309, 2180 (2005).
[4] J. R. Petta, H. Lu, and A. C. Gossard, Science 327, 669

(2010).
[5] J. M. Nichol, S. P. Harvey, M. D. Shulman, A. Pal, V.

Umansky, E. I. Rashba, B. I. Halperin, and A. Yacoby,
Nat. Commun. 6, 7682 (2015).

[6] K. Ono, D. G. Austing, Y. Tokura, and S. Tarucha, Science
297, 1313 (2002).

[7] S. A. Studenikin, G. C. Aers, G. Granger, L. Gaudreau, A.
Kam, P. Zawadzki, Z. R. Wasilewski, and A. S. Sachrajda,
Phys. Rev. Lett. 108, 226802 (2012).

[8] L. Gaudreau, G. Granger, A. Kam, G. C. Aers, S. A.
Studenikin, P. Zawadzki, M. Pioro-Ladrière, Z. R.
Wasilewski, and A. S. Sachrajda, Nat. Phys. 8, 54 (2012).

[9] L. Gaudreau, A. Kam, G. Granger, S. A. Studenikin, P.
Zawadzki, and A. S. Sachrajda, Appl. Phys. Lett. 95,
193101 (2009).

[10] G. Granger, L. Gaudreau, A. Kam, M. Pioro-Ladrière, S. A.
Studenikin, Z. R. Wasilewski, P. Zawadzki, and A. S.
Sachrajda, Phys. Rev. B 82, 075304 (2010).

[11] G. Granger et al., Nat. Phys. 8, 522 (2012).
[12] G. J. Schinner, H. P. Tranitz, W. Wegscheider, J. P. Kotthaus,

and S. Ludwig, Phys. Rev. Lett. 102, 186801 (2009).
[13] D. Harbusch, D. Taubert, H. P. Tranitz, W. Wegscheider, and

S. Ludwig, Phys. Rev. Lett. 104, 196801 (2010).
[14] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.118.067701 for a de-
tailed discussion of the theoretical model, which includes
Refs. [15–17].

[15] S. Ashhab, J. R. Johansson, A. M. Zagoskin, and F. Nori,
Phys. Rev. A 75, 063414 (2007).

[16] S. N. Shevchenko, S. Ashhab, and F. Nori, Phys. Rep. 492, 1
(2010).

[17] Landolt-Börnstein Numerical Data and Functional
Relationships in Science and Technology, edited by
O. Madelung (Springer-Verlag, Berlin, 1987), Vol. 22.

[18] M. Field, C. G. Smith, M. Pepper, D. A. Ritchie, J. E. F.
Frost, G. A. C. Jones, and D. G. Hasko, Phys. Rev. Lett. 70,
1311 (1993).

[19] E. I. Rashba, Fiz. Tverd. Tela (Leningrad) 2, 1224 (1960)
[Sov. Phys. Solid State 2, 1109 (1960)].

[20] G. Dresselhaus, Phys. Rev. 100, 580 (1955).
[21] M. Florescu and P. Hawrylak, Phys. Rev. B 73, 045304

(2006).
[22] U. Bockelmann and G. Bastard, Phys. Rev. B 42, 8947

(1990).
[23] G. Granger, G. C. Aers, S. A. Studenikin, A. Kam, P.

Zawadzki, Z. R. Wasilewski, and A. S. Sachrajda, Phys.
Rev. B 91, 115309 (2015).

[24] S. A. Studenikin and E. M. Skok, Phys. Status Solidi (b)
134, 745 (1986).

[25] J. Danon and Y. V. Nazarov, Phys. Rev. B 80, 041301(R)
(2009).

[26] D. Kim et al., Nature (London) 511, 70 (2014).
[27] E. A. Laird, J. M. Taylor, D. P. DiVincenzo, C. M. Marcus,

M. P. Hanson, and A. C. Gossard, Phys. Rev. B 82, 075403
(2010).

PRL 118, 067701 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

10 FEBRUARY 2017

067701-5

http://dx.doi.org/10.1103/PhysRevLett.85.1758
http://dx.doi.org/10.1103/PhysRevLett.85.1758
http://dx.doi.org/10.1103/PhysRevB.76.035315
http://dx.doi.org/10.1126/science.1116955
http://dx.doi.org/10.1126/science.1183628
http://dx.doi.org/10.1126/science.1183628
http://dx.doi.org/10.1038/ncomms8682
http://dx.doi.org/10.1126/science.1070958
http://dx.doi.org/10.1126/science.1070958
http://dx.doi.org/10.1103/PhysRevLett.108.226802
http://dx.doi.org/10.1038/nphys2149
http://dx.doi.org/10.1063/1.3258663
http://dx.doi.org/10.1063/1.3258663
http://dx.doi.org/10.1103/PhysRevB.82.075304
http://dx.doi.org/10.1038/nphys2326
http://dx.doi.org/10.1103/PhysRevLett.102.186801
http://dx.doi.org/10.1103/PhysRevLett.104.196801
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.067701
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.067701
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.067701
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.067701
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.067701
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.067701
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.067701
http://dx.doi.org/10.1103/PhysRevA.75.063414
http://dx.doi.org/10.1016/j.physrep.2010.03.002
http://dx.doi.org/10.1016/j.physrep.2010.03.002
http://dx.doi.org/10.1103/PhysRevLett.70.1311
http://dx.doi.org/10.1103/PhysRevLett.70.1311
http://dx.doi.org/10.1103/PhysRev.100.580
http://dx.doi.org/10.1103/PhysRevB.73.045304
http://dx.doi.org/10.1103/PhysRevB.73.045304
http://dx.doi.org/10.1103/PhysRevB.42.8947
http://dx.doi.org/10.1103/PhysRevB.42.8947
http://dx.doi.org/10.1103/PhysRevB.91.115309
http://dx.doi.org/10.1103/PhysRevB.91.115309
http://dx.doi.org/10.1002/pssb.2221340234
http://dx.doi.org/10.1002/pssb.2221340234
http://dx.doi.org/10.1103/PhysRevB.80.041301
http://dx.doi.org/10.1103/PhysRevB.80.041301
http://dx.doi.org/10.1038/nature13407
http://dx.doi.org/10.1103/PhysRevB.82.075403
http://dx.doi.org/10.1103/PhysRevB.82.075403

