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We show that quantum diffusion near a quantum critical point can provide an efficient mechanism of
quantum annealing. It is based on the diffusion-mediated recombination of excitations in open systems far
from thermal equilibrium. We find that, for an Ising spin chain coupled to a bosonic bath and driven by a
monotonically decreasing transverse field, excitation diffusion sharply slows down below the quantum
critical region. This leads to spatial correlations and effective freezing of the excitation density. Still,
obtaining an approximate solution of an optimization problem via the diffusion-mediated quantum
annealing can be faster than via closed-system quantum annealing or Glauber dynamics.
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Quantum annealing (QA) has been proposed as a candidate
for a speed-up of solving hard optimization problems
[1-3]. Optimization can be thought of as motion toward the
potential minimum in the energy landscape associated with the
computational problem. Conventionally, QA is related to
quantum tunneling in the landscape that is slowly varied in
time [4]. It provides an alternative to simulated annealing,
which relies on classical diffusion via thermally activated
interwell transitions. It was suggested that the coupling to the
environment would not necessarily be detrimental to QA [5-7].

Recently, the role of quantum tunneling as a computa-
tional resource has become a matter of active debate [8—13],
as it is not necessarily advantageous compared to classi-
cal computational techniques, e.g., the path integral
Monte Carlo method [14-16]. In addition, dissipation
and noise can make tunneling incoherent, significantly
slowing down [17] the transition rates that underlie QA.

In this Letter we show that dissipation-mediated quantum
diffusion can provide an efficient additional resource for QA.
We model QA as the evolution of a far-from-thermal-
equilibrium multispin system, which is coupled to a thermal
reservoir and is driven by a time-dependent field. The
diffusion involves environment-induced transitions between
entangled states. These states are delocalized coherent super-
positions of multispin configurations separated by a large
number of spin flips (a large Hamming distance). At a late
stage of QA the diffusion coefficient decreases. Ultimately
diffusion becomes hopping between localized states and QA
is dramatically slowed down. An important question is
whether the solution obtained by then is closer to the optimum
than the solution obtained over the same time classically.

Diffusion plays a special role when the system is driven
through the quantum critical region, as often considered in
QA [2,4,8]. A well-known result of going through such a
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region is the generation of excitations via the Kibble-Zurek
mechanism [18,19]. This leads to an error, in terms of QA,
as the system is ultimately frozen in the excited state. The
generation rate can be even higher in the presence of
coupling to the environment [20,21].

It is diffusion that makes it possible for the excitations to
“meet” each other and to recombine, thus reducing their
number. Near the critical region, diffusion is enhanced because
of the large correlation length. It has universal features related
to the simple form of the excitation energy spectrum.

The effect of quantum-diffusion-induced acceleration of
QA is of the utmost importance for systems with delocalized
multispin excitations, in particular, above or close to the
threshold of many-body localization transition. To reveal and
characterize this new effect, we study it here for a model with
no disorder. This model is of interest on its own as an example
of a far-from-equilibrium system coupled to the environment.
The specific model is a one-dimensional Ising spin chain
driven through the quantum phase transition by varying a
transverse magnetic field at a constant speed. Among recent
applications of this classic model, we could mention cold-
atom systems [22-24] and the circuit QED [25].

We assume that each spin is weakly coupled to its own
bosonic bath. The QA Hamiltonian is

-1 N

Hop=~J ) (05051 +903) = D _onX, + Hp. (1)

n=1 n=1

where N is the number of spins, J¢(¢) is the transverse field, 67,
0% are Pauli matrices, Hp = Zn’yha)ynb;nbyn is the baths’
Hamiltonian, X, =" 4,,(bju +b,,), and b}, b,
boson creation and annihilation operators in the nth bath.
We assume Ohmic dissipation, 2 -, (4,,,/ h)?8(w-w,,)=aw,
a <1, and a linear-in-time schedule for reducing the
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transverse field, §(r) = —v < 0, starting from the initial value
gi > 1. We further assume translational symmetry, so that 4,,,
and w,, are independent of n. The spin-boson coupling (1)
provides a microscopic model for the classical spin-flip process
in the Glauber dynamics [26].

In the absence of coupling to the environment, model (1)
describes a quantum phase transition between a paramag-
netic phase (¢ > 1) and a ferromagnetic phase (g < 1) [27].
The spin part of the Hamiltonian (1) can be mapped onto
fermions [28] using the Jordan-Wigner transformation,
of =1-2a}a,, o5 =—K(n)(a,+a,), where K(j)=
[[;<jo} and a}, and a,, are fermion creation and annihilation
operators. Changing in the standard way to new creation
and annihilation operators 7}, 1, with 5, = (1/v/N)x
SN [a, cos(6;/2) — ia} sin(6;/2)]e~*", we obtain the
Hamiltonian of the isolated spin chain as Hy =
27y kekr]}:nk, where ¢, is the dimensionless fermion energy,

sin k

€ = \/(g —cos k)? + sin’k, tan 0, =

(2)

g—cosk’

The dependence of the minimal energy A = 2J¢, on g and
the form of €, are illustrated in Fig. 1.

In the course of QA, pairs of fermions with opposite
momenta are born from vacuum due to the Landau-Zener
transitions as the system passes through the critical point
g =1 [18,19]. The resulting density of excitations ng for
large N is simply related to the QA speed [29],

ngz = |fl§/87f]|1/2- (3)

In terms of the fermion operators, the Hamiltonian of the
coupling to bosons, Eq. (1), reads

Hi = hwXiw,
kK’

hgw = Ckk”']]t”]k’ + Skk"?/i’?ik/ + S -k (4)

where X, = > 4,(b,, + b;-,) are boson field operators,
b,, = N"V/23" b, exp(—ign), and the coefficients cyy
and s, are expressed in terms of the rotation angles 6,
0,, see Eq. (24) of the Supplemental Material (SM) [30].

From Eq. (4) one can identify three types of relaxation
processes, see Figs. 1(b)—1(c). The first is scattering by a
boson in which a fermion changes its momentum k and
energy ¢;. The rate of a single-fermion transition k — &’ is
W,jkT o |ciw|>. The other processes are generation and
recombination of pairs of fermions due to boson scattering.
The parity of the total number of fermions is not changed.
The generation and recombination rates W;’kT and W,
are o | s |?

bl
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FIG. 1. (a) The dependence of the gap A in the energy spectrum
of the Ising chain (2) on the scaled transverse field g, which
linearly decreases in time. (b) The fermion dispersion law and the
processes of fermion scattering induced by the coupling to the
bosonic field. Both the generation and the recombination are two-
fermion processes. (c) The diagrams that show single-fermion
intraband scattering, recombination, and generation of fermions;
the change of the fermion energy and momentum comes from the
bosons. (d) The dependence of the density of quasiparticles on
time (g = 1 — gt). The boundary of the filled region shows the
thermal equilibrium density, whereas the solid line shows the
nonequilibrium density calculated using the Boltzmann equa-
tion (6) and disregarding spatial correlations.

L 2ma — (O
Wi = WQ’,:,(,[I — pw cos(uby, — vOy)][A(L) + 1],

Q/Z; = 2J(ﬂ€k + I/€k/)/fl, (5)

where p, v = + and 7(w) = [exp(hw/kgT) — 1]71.

The single-particle quantum kinetic equation that incor-
porated these processes was considered in Refs. [20,21]. It
was written for the coupled fermion populations (r],tr]k> and
coherences (n;n_). The approach [20,21] involved two
major approximations, the spatial uniformity of the fermion
distribution and the absence of fermion correlations. These
approximations hold in the critical region, where the gap in
the energy spectrum A(g) = 2J|1 — g| < kgT. For a suffi-
ciently low QA rate, the density of excitations is dominated
by thermal processes rather than the Landau-Zener tunnel-
ing [20,21]. The fermion population in this region is
lexp(2Je,/kgT) + 1]71, see Fig. 1(d).

QA aims at minimizing the number of excitations over a
given time. As we show, for the considered open system there
exists an optimal QA speed that allows one to achieve the
excitation density far below the Landau-Zener-limited density
(3) in a closed system. This density corresponds to the
bottleneck of QA imposed by the sharp slowing-down of
excitation decay due to many-fermion effects and spatial
correlations. The approximation [20,21] does not capture this
effect. The full analysis requires solving the full Bogolyubov
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chain of equations for the coupled many-particle Green’s
functions [38]. However, the density where the slowing-down
occurs and the scaling relations between the speed g and the
final density of excitations, which are our primary interest,
can be found in a simpler way, as discussed below.

As we show, the range of interest is g behind the critical
region, yet close to it, where 1 — g < 1. In this range, as g
decreases, spatial correlations in the fermion system
change from weak to strong. We start with the region of
comparatively high densities, where spatial correlations can
be disregarded and the fermion dynamics is described [39] by
the Boltzmann equation for the single-fermion Wigner prob-

ability density py (x, k) = - fdp<'7]t+p/277k—P/2>e_ipx,

7 )VW] + 2m[ﬂw]- (6)

Here, operator L describes single-fermion scattering by
bosons [39], see Fig. 1, with the transition rates Wkk, given by
Eq. (5); cf. Egs. (6) and (9) in the Supplemental Material [30].
The characteristic reciprocal relaxation time of fermion
momentum due to single-fermion scattering 7! is determined
by the transition rate W, for fermions with energies
2Jer, 2Jepy ~ kT,

7' (9) = 2akpT|(1

2J A
Oipw + — (Oxer)Oxpw = LY

kk'

- g)/pgh*]'2,

This expression refers to the semiclassical range behind the
critical point where the excitation gap A has become large
compared to kgT,

B =21/kgT. (7)

e~ R)/ksT 1

A(g) =2J(1 - g). (8)

The rate 7;'(g) increases with the distance 1 — g« A
from the critical point. Extrapolating it back to the critical
region A = kT, we recover the scaling of the critical
relaxation rate (z;!). found in [20,21]. For the slow
quantum annealing rate that we consider,

Tgl < h(@ e (57, =4Ja/hp?, ©)

the fermion distribution in the critical region remains of the
Boltzmann form.

Operator £V[pyy] in Eq. (6) describes two-fermion
generation and recombination accompanied, respectively,
by absorption and emission of a boson, see Fig. 1.
Recombination requires a collision of two fermions with
a boson, see Fig. 1. Respectively, the recombination term is
quadratic in py,

rec VW x, k)] = _NZqu pw(x, k)pw(x,q).  (10)

It becomes small for small fermion densities. In contrast,
the generation term 2221 [pw(x, k)] is density-independent
for small densities and is proportional to W; =

exp[—A(g)/kgT]. It rapidly falls off as the control param-
eter g moves away from the critical point.

Overall, in the range (8) the generation and recombina-
tion rates described by £ are small compared to the
momentum relaxation rate 7, !, and the distribution over the
fermion momentum approaches thermal equilibrium with
the bosonic bath temperature. Function py(x,k) in (6)
factors into a product of the Boltzmann distribution over
fermion energy ¢; and a coordinate-dependent fermion
density n(x. 1), py = n(x. 1) exp(—per) /3y exp(—pe).

A new time scale is associated with the decay of density
fluctuations. In the considered approximation this decay is
described by the diffusion equation

n(x,t) = Dn(x, 1), D=

I P
——. (11
D on (g 1V

The diffusion coefficient (11) has a standard form D ~ (v?)z,
with v, = (2J/h)0e; being the fermion velocity; D sharply
increases with decreasing 1 — g. In Eq. (11) ¢p = 0.17 [30].

On the time long compared to the decay time of density
fluctuations, the distribution n(x, ) becomes uniform and
its evolution is determined by generation and recombina-
tion processes. The spatially averaged density (n) is
described by a rate equation,

() = —w((n)* = ng,). (12)

= N3, exp(—pe;) is the thermal equi-
=2k Wi, exp[-pler +
€,)]/Nnj, is the recombination rate. From Eq. (5), for

Here, ny, = ny(9)
librium density, whereas w(g)

p>1-g,1/g
8ra 1—9)”2 (1~
w(g) = ———, n == e 9), 13
0= o) = (5 (13)

As g = ¢(1) decreases, the thermal density ny, exponen-
tially sharply falls down. The mean density (n) cannot
follow this decrease, so that the density of fermions
becomes higher than the thermal density. This happens
for the value ¢(f) = g4 where the correction &(n) =
(n(1)) — ng(g(r)) becomes ~ny,(g(t)), see Figs. 1 and 2.
The quasistationary solution of the linearized Eq. (12) reads
&(n) ~ —ny,/2wny,. This gives an equation for gy,

ﬂ_lw(g)”th(g) =|g| for g = gp. (14)

As g is decreased below gy and reaches the region
exp{flgm — 9(1)]} > 1, we can disregard ngy, in Eq. (12).
Then using the explicit form of the rate w(g), we obtain

(n(1)) % B~ (gm) (log [gn/ 9(1)]) " (15)

This expression describes quantum annealing of fermion
density in a strongly nonequilibrium regime. We observe
that (n(z)) varies with time only logarithmically here.
For still smaller g, not only does the system move further
away from thermal equilibrium in terms of (n), but it also
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FIG. 2. Fermion density (a) vs the distance to the critical point
and (b) vs the annealing rate. In (a), the filled region is bound by
the thermal distribution ngy(g). The black line shows the non-
equilibrium density (n) for a=0.06, p=25and
9] = |glope = 2.85 x 1077, see Eq. (12). The blue point marks
the crossover value g,. For g < g, spatial correlations become
strong and the theory is inapplicable. In (b), the red, blue, green,
and black lines show the scaled density 72, = c,n, /8kza® vs
the scaled QA rate v = A |g|/4v/ 2] a forlog u = 8,9, 10, 11,
respectively [parameter p o (#/a)? is defined in (17)]. The
minimal density nq, = min n,. The dashed sections of the lines
refer to the regions where the asymptotic theory does not apply.

develops strong spatial fluctuations. This is due to the sharp
decrease of the diffusion coefficient D = D(g), see Eq. (11).
Spatial fluctuations of the density n(x, ¢) impose a bottleneck
on the recombination in one-dimensional systems [36],
because for fermions to recombine they first have to come
close to each other. In contrast to the usually studied reaction-
diffusion systems, in the present case the bottleneck arises
not because of the decrease of the density, but, in the first
place, because of the falloff of the diffusion coefficient. Once
the recombination becomes limited by diffusion, the change
of the fermion density becomes slower than in Eq. (15).

To estimate the density n, = (n(t,)) where the crossover
to diffusion-limited recombination occurs, we set the rates
n of the recombination and diffusion processes equal to
each other. For the recombination, one can use Eq. (12),
i = —wn?. For the diffusion, one can use Eq. (11) where
the mean interparticle distance 1/(n) is chosen as a spatial
scale on which the density fluctuates. This gives

n. = (n(t.)) = kw(g.)/D(g.).  g.=g(t.). (16)
where k~ 1. An alternative way of estimating n, is
described in Sec. IV of the SM [30].

Equations (14)—(16) relate the crossover value of g = g,
to the value gy, where thermal equilibrium is broken. Since
Jx» g are close to the critical point g = 1, it is convenient to
switch to variable z = pf(1—-g), with z, =p(1 —g,)
expressed in terms of zg, = (1 — gy,) as follows:

u(pla)z* exp(—zn) = 2z —z0),  (17)

where  u=cp/8kV27%; note  that  B/a> 1.
Equations (14)—(17) express the crossover density n, in
terms of the speed |g|.

Beyond the crossover point, g < g, (i.e., t > t,), the
diffusion-controlled decrease with time of the already-small
fermion density is further significantly slowed down
compared to Eq. (15). If we stop QA once g, is reached,
n, gives the approximate solution of the annealing prob-
lem. Unexpectedly, the dependence of n, and g, on |g| is
nonmonotonic, see Fig. 2. The optimal (minimal with
respect to |g|) value of n, is

Nop: % [87ka? /2o (18)

where 2o = (1 — gop) ~ log[u(B/a)?] is the value of z,
where n, is optimal. The optimal speed is

|Glope & (64knJa* [cpfoh) In(p* /o) /2. (19)

Equation (9) suggests that, in the considered dissipative
system, QA can be started at the critical point. Then the
time Zop/ B op to reach gy is a small portion of the total
time to reach g = 0, which is |g|;). The density nyy is
extremely small for weak coupling, a <1, and low
temperatures, > 1, and it rapidly decreases with decreas-
ing a and kzT/J.

The evolution of the fermion density for 7> ¢, can
be roughly estimated from the scaling equation
(n) = =k'D(g)(n)?, cf. [36], where k' ~ 1. Because of
the sharp decrease of D(g) with increasing 1 — g, the
solution of this equation for 1 — g = O(1) weakly depends
on g(#). For the optimal speed (19) such saturation density
is (1) ~ nop/ In(B/a) < Ny

It is instructive to compare the optimal speed (19) with
the speed |g|x, that would lead to the same saturation
density, n,y/In(f/a) = ngz, due to the Kibble-Zurek
mechanism of the creation of excitations in the absence
of coupling to the environment. From Egs. (3) and (19),

gopt/gKZ & (ﬁ/a) ln(ﬂ/a)z > 1. (20)

Therefore, the time it takes to reach the approximate
solution (18) in a closed quantum system is much larger
than in our case.

It is instructive also to compare |g|,, with the speed of
annealing based on the classical Glauber dynamics [26]. In
this dynamics, for kz7T < J excitations in the Ising spin
chain are eliminated through diffusion of kinks. If the
transition rate for a kink to move to a neighboring site is wg
and the initial density of the kinks is ~1, the time 7., to
reach density n < 1 is (8zwgn?)~"' [26]. In terms of our
model, the uncertainty relation imposes a limitation
wg < J/h. Therefore the ratio of the times to reach
Nop/ In(f/@) via classical and quantum diffusion is very
large, Ntclass|g|opt o fla> 1.

The results demonstrate that quantum diffusion near
the critical point provides an important mechanism of the
speed-up of QA. The diffusion occurs over states that are
large quantum superpositions of spin configurations
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separated by the Hamming distance ~Bgla(1 — g)]~! > 1 of
the order of the mean free path of a fermion. The bottleneck
of QA in an open system can be imposed by the sharp
slowing-down of the diffusion behind the critical region. The
crossover to slow excitation recombination is accompanied
by the onset of significant spatial fluctuations of the
excitation density even in the absence of disorder. At the
crossover, the residual density of excitations nonmonotoni-
cally depend on the quantum annealing rate | ¢|. Its minimum
provides the optimal value of the rate. This value scales with
the coupling constant and temperature as 77, and the
optimal excitation density is o« o?T>. Importantly, the
optimal speed ||, is independent of the system size.

For our simple but nontrivial example of QA, attaining
the approximate solution [40] via the quantum-diffusion-
mediated process is faster than via classical diffusion or the
closed-system QA. One might expect that, in higher-
dimensional systems, quantum diffusion over extended
states could provide an efficient route to finding approxi-
mate solutions in the presence of disorder above the many-
body mobility edge [41].
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