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We show that quantum diffusion near a quantum critical point can provide an efficient mechanism of
quantum annealing. It is based on the diffusion-mediated recombination of excitations in open systems far
from thermal equilibrium. We find that, for an Ising spin chain coupled to a bosonic bath and driven by a
monotonically decreasing transverse field, excitation diffusion sharply slows down below the quantum
critical region. This leads to spatial correlations and effective freezing of the excitation density. Still,
obtaining an approximate solution of an optimization problem via the diffusion-mediated quantum
annealing can be faster than via closed-system quantum annealing or Glauber dynamics.
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Quantum annealing (QA) has been proposed as a candidate
for a speed-up of solving hard optimization problems
[1–3]. Optimization can be thought of as motion toward the
potential minimum in the energy landscape associatedwith the
computational problem. Conventionally, QA is related to
quantum tunneling in the landscape that is slowly varied in
time [4]. It provides an alternative to simulated annealing,
which relies on classical diffusion via thermally activated
interwell transitions. It was suggested that the coupling to the
environmentwould not necessarily bedetrimental toQA[5–7].
Recently, the role of quantum tunneling as a computa-

tional resource has become a matter of active debate [8–13],
as it is not necessarily advantageous compared to classi-
cal computational techniques, e.g., the path integral
Monte Carlo method [14–16]. In addition, dissipation
and noise can make tunneling incoherent, significantly
slowing down [17] the transition rates that underlie QA.
In this Letter we show that dissipation-mediated quantum

diffusion can provide an efficient additional resource for QA.
We model QA as the evolution of a far-from-thermal-
equilibrium multispin system, which is coupled to a thermal
reservoir and is driven by a time-dependent field. The
diffusion involves environment-induced transitions between
entangled states. These states are delocalized coherent super-
positions of multispin configurations separated by a large
number of spin flips (a large Hamming distance). At a late
stage of QA the diffusion coefficient decreases. Ultimately
diffusion becomes hopping between localized states and QA
is dramatically slowed down. An important question is
whether the solutionobtained by then is closer to theoptimum
than the solution obtained over the same time classically.
Diffusion plays a special role when the system is driven

through the quantum critical region, as often considered in
QA [2,4,8]. A well-known result of going through such a

region is the generation of excitations via the Kibble-Zurek
mechanism [18,19]. This leads to an error, in terms of QA,
as the system is ultimately frozen in the excited state. The
generation rate can be even higher in the presence of
coupling to the environment [20,21].
It is diffusion that makes it possible for the excitations to

“meet” each other and to recombine, thus reducing their
number. Near the critical region, diffusion is enhanced because
of the large correlation length. It has universal features related
to the simple form of the excitation energy spectrum.
The effect of quantum-diffusion-induced acceleration of

QA is of the utmost importance for systems with delocalized
multispin excitations, in particular, above or close to the
threshold of many-body localization transition. To reveal and
characterize this new effect, we study it here for a model with
no disorder. Thismodel is of interest on its own as an example
of a far-from-equilibrium system coupled to the environment.
The specific model is a one-dimensional Ising spin chain
driven through the quantum phase transition by varying a
transverse magnetic field at a constant speed. Among recent
applications of this classic model, we could mention cold-
atom systems [22–24] and the circuit QED [25].
We assume that each spin is weakly coupled to its own

bosonic bath. The QA Hamiltonian is

HQA ¼ −J
XN−1

n¼1

ðσznσznþ1 þ gσxnÞ −
XN
n¼1

σxnXn þHB; ð1Þ

whereN is thenumber of spins,JgðtÞ is the transverse field,σxn,
σzn are Pauli matrices, HB ¼ P

n;γℏωγnb
†
γnbγn is the baths’

Hamiltonian, Xn ¼
P

γλγnðb†γn þ bγnÞ, and b†γn, bγn are
boson creation and annihilation operators in the nth bath.
WeassumeOhmicdissipation,2

P
γðλγn=ℏÞ2δðω−ωγnÞ¼αω,

α ≪ 1, and a linear-in-time schedule for reducing the
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transverse field, _gðtÞ ¼ −v < 0, starting from the initial value
gi ≫ 1. We further assume translational symmetry, so that λγn
and ωγn are independent of n. The spin-boson coupling (1)
provides amicroscopicmodel for the classical spin-flip process
in the Glauber dynamics [26].
In the absence of coupling to the environment, model (1)

describes a quantum phase transition between a paramag-
netic phase (g > 1) and a ferromagnetic phase (g < 1) [27].
The spin part of the Hamiltonian (1) can be mapped onto
fermions [28] using the Jordan-Wigner transformation,
σxn ¼ 1 − 2a†nan, σzn ¼ −KðnÞða†n þ anÞ, where KðjÞ ¼Q

i<jσ
x
i and a

†
n and an are fermion creation and annihilation

operators. Changing in the standard way to new creation
and annihilation operators η†k, ηk, with ηk ¼ ð1= ffiffiffiffi

N
p Þ×P

N
n¼1½an cosðθk=2Þ − ia†n sinðθk=2Þ�e−ikn, we obtain the

Hamiltonian of the isolated spin chain as H0 ¼
2J

P
kϵkη

†
kηk, where ϵk is the dimensionless fermion energy,

ϵk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg − cos kÞ2 þ sin2k

q
; tan θk ¼

sin k
g − cos k

: ð2Þ

The dependence of the minimal energy Δ ¼ 2Jϵ0 on g and
the form of ϵk are illustrated in Fig. 1.
In the course of QA, pairs of fermions with opposite

momenta are born from vacuum due to the Landau-Zener
transitions as the system passes through the critical point
g ¼ 1 [18,19]. The resulting density of excitations nKZ for
large N is simply related to the QA speed [29],

nKZ ¼ jℏ_g=8πJj1=2: ð3Þ

In terms of the fermion operators, the Hamiltonian of the
coupling to bosons, Eq. (1), reads

Hi ¼
X
kk0

hkk0Xk−k0 ;

hkk0 ¼ ckk0η
†
kηk0 þ skk0η

†
kη

†
−k0 þ s�k0kη−kηk0 ; ð4Þ

where Xq ¼
P

γλγðbγq þ b†γ−qÞ are boson field operators,
bγq ¼ N−1=2P

nbγn expð−iqnÞ, and the coefficients ckk0
and skk0 are expressed in terms of the rotation angles θk,
θq, see Eq. (24) of the Supplemental Material (SM) [30].
From Eq. (4) one can identify three types of relaxation

processes, see Figs. 1(b)–1(c). The first is scattering by a
boson in which a fermion changes its momentum k and
energy ϵk. The rate of a single-fermion transition k → k0 is
Wþ−

kk0 ∝ jckk0 j2. The other processes are generation and
recombination of pairs of fermions due to boson scattering.
The parity of the total number of fermions is not changed.
The generation and recombination rates Wþþ

kk0 and W−−
kk0

are ∝ jskk0 j2,

Wμν
kk0 ¼

2πα

N
Ωμν

kk0 ½1 − μν cosðμθk − νθk0 Þ�½nðΩμν
kk0 Þ þ 1�;

Ωμν
kk0 ¼ 2Jðμϵk þ νϵk0 Þ=ℏ; ð5Þ

where μ, ν ¼ � and nðωÞ ¼ ½expðℏω=kBTÞ − 1�−1.
The single-particle quantum kinetic equation that incor-

porated these processes was considered in Refs. [20,21]. It
was written for the coupled fermion populations hη†kηki and
coherences hηkη−ki. The approach [20,21] involved two
major approximations, the spatial uniformity of the fermion
distribution and the absence of fermion correlations. These
approximations hold in the critical region, where the gap in
the energy spectrum ΔðgÞ ¼ 2Jj1 − gj ≲ kBT. For a suffi-
ciently low QA rate, the density of excitations is dominated
by thermal processes rather than the Landau-Zener tunnel-
ing [20,21]. The fermion population in this region is
½expð2Jϵk=kBTÞ þ 1�−1, see Fig. 1(d).
QA aims at minimizing the number of excitations over a

given time. Aswe show, for the considered open system there
exists an optimal QA speed that allows one to achieve the
excitationdensity far below theLandau-Zener-limiteddensity
(3) in a closed system. This density corresponds to the
bottleneck of QA imposed by the sharp slowing-down of
excitation decay due to many-fermion effects and spatial
correlations. The approximation [20,21] does not capture this
effect. The full analysis requires solving the full Bogolyubov

(a)

(b)

(c)

(d)

FIG. 1. (a) The dependence of the gap Δ in the energy spectrum
of the Ising chain (2) on the scaled transverse field g, which
linearly decreases in time. (b) The fermion dispersion law and the
processes of fermion scattering induced by the coupling to the
bosonic field. Both the generation and the recombination are two-
fermion processes. (c) The diagrams that show single-fermion
intraband scattering, recombination, and generation of fermions;
the change of the fermion energy and momentum comes from the
bosons. (d) The dependence of the density of quasiparticles on
time (g ¼ 1 − _gt). The boundary of the filled region shows the
thermal equilibrium density, whereas the solid line shows the
nonequilibrium density calculated using the Boltzmann equa-
tion (6) and disregarding spatial correlations.
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chain of equations for the coupled many-particle Green’s
functions [38].However, the densitywhere the slowing-down
occurs and the scaling relations between the speed _g and the
final density of excitations, which are our primary interest,
can be found in a simpler way, as discussed below.
As we show, the range of interest is g behind the critical

region, yet close to it, where 1 − g ≪ 1. In this range, as g
decreases, spatial correlations in the fermion system
change from weak to strong. We start with the region of
comparatively high densities, where spatial correlations can
be disregarded and the fermion dynamics is described [39] by
the Boltzmann equation for the single-fermion Wigner prob-
ability density ρWðx; kÞ ¼ ð2πÞ−1 R dphη†kþp=2ηk−p=2ie−ipx,

∂tρW þ 2J
ℏ
ð∂kϵkÞ∂xρW ¼ L̂ð0Þ½ρW � þ L̂ð1Þ½ρW �: ð6Þ

Here, operator L̂ð0Þ describes single-fermion scattering by
bosons [39], see Fig. 1, with the transition ratesWþ−

kk0 given by
Eq. (5); cf. Eqs. (6) and (9) in the Supplemental Material [30].
The characteristic reciprocal relaxation time of fermion
momentum due to single-fermion scattering τ−1r is determined
by the transition rate Wþ−

kk0 for fermions with energies
2Jϵk, 2Jϵk0 ∼ kBT,

τ−1r ðgÞ ¼ 2αkBT½ð1 − gÞ=βgℏ2�1=2; β ¼ 2J=kBT: ð7Þ
This expression refers to the semiclassical range behind the
critical point where the excitation gap Δ has become large
compared to kBT,

e−ΔðgÞ=kBT ≪ 1; ΔðgÞ ¼ 2Jð1 − gÞ: ð8Þ
The rate τ−1r ðgÞ increases with the distance 1 − g ∝ Δ

from the critical point. Extrapolating it back to the critical
region Δ≃ kBT, we recover the scaling of the critical
relaxation rate ðτ−1r Þc found in [20,21]. For the slow
quantum annealing rate that we consider,

Jj_gj ≪ ℏðτ−1r Þc; ðτ−1r Þc ≃ 4Jα=ℏβ2; ð9Þ
the fermion distribution in the critical region remains of the
Boltzmann form.
Operator L̂ð1Þ½ρW � in Eq. (6) describes two-fermion

generation and recombination accompanied, respectively,
by absorption and emission of a boson, see Fig. 1.
Recombination requires a collision of two fermions with
a boson, see Fig. 1. Respectively, the recombination term is
quadratic in ρW ,

L̂ð1Þ
rec ½ρWðx; kÞ� ¼ −N

X
q

Wþþ
kq ρWðx; kÞρWðx; qÞ: ð10Þ

It becomes small for small fermion densities. In contrast,

the generation term L̂ð1Þ
gen½ρWðx; kÞ� is density-independent

for small densities and is proportional to W−−
kq ∝

exp½−ΔðgÞ=kBT�. It rapidly falls off as the control param-
eter g moves away from the critical point.

Overall, in the range (8) the generation and recombina-
tion rates described by L̂ð1Þ are small compared to the
momentum relaxation rate τ−1r , and the distribution over the
fermion momentum approaches thermal equilibrium with
the bosonic bath temperature. Function ρWðx; kÞ in (6)
factors into a product of the Boltzmann distribution over
fermion energy ϵk and a coordinate-dependent fermion
density nðx; tÞ, ρW ¼ nðx; tÞ expð−βϵkÞ=

P
k expð−βϵkÞ.

A new time scale is associated with the decay of density
fluctuations. In the considered approximation this decay is
described by the diffusion equation

_nðx; tÞ ¼ D∂2
xnðx; tÞ; D ¼ cD

Jβ1=2

αℏ
g3=2

ð1 − gÞ3=2 : ð11Þ

The diffusion coefficient (11) has a standard formD ∼ hv2kiτr
with vk ¼ ð2J=ℏÞ∂kϵk being the fermion velocity;D sharply
increases with decreasing 1 − g. In Eq. (11) cD ≈ 0.17 [30].
On the time long compared to the decay time of density

fluctuations, the distribution nðx; tÞ becomes uniform and
its evolution is determined by generation and recombina-
tion processes. The spatially averaged density hni is
described by a rate equation,

h _ni ¼ −wðhni2 − n2thÞ: ð12Þ

Here, nth ≡ nthðgÞ ¼ N−1P
k expð−βϵkÞ is the thermal equi-

librium density, whereas wðgÞ ¼ P
k;qW

þþ
kq exp½−βðϵk þ

ϵqÞ�=Nn2th is the recombination rate. From Eq. (5), for
β ≫ 1 − g, 1=g

wðgÞ≃ 8παJ
ℏβg

; nthðgÞ≃
�
1 − g
2πβg

�
1=2

e−βð1−gÞ: ð13Þ

As g≡ gðtÞ decreases, the thermal density nth exponen-
tially sharply falls down. The mean density hni cannot
follow this decrease, so that the density of fermions
becomes higher than the thermal density. This happens
for the value gðtÞ ¼ gth where the correction δhni ¼
hnðtÞi − nthðgðtÞÞ becomes ∼nthðgðtÞÞ, see Figs. 1 and 2.
The quasistationary solution of the linearized Eq. (12) reads
δhni ≈ − _nth=2wnth. This gives an equation for gth

β−1wðgÞnthðgÞ ¼ j_gj for g ¼ gth: ð14Þ
As g is decreased below gth and reaches the region

expfβ½gth − gðtÞ�g ≫ 1, we can disregard nth in Eq. (12).
Then using the explicit form of the rate wðgÞ, we obtain

hnðtÞi ≈ β−1nthðgthÞðlog ½gth=gðtÞ�Þ−1: ð15Þ

This expression describes quantum annealing of fermion
density in a strongly nonequilibrium regime. We observe
that hnðtÞi varies with time only logarithmically here.
For still smaller g, not only does the system move further

away from thermal equilibrium in terms of hni, but it also
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develops strong spatial fluctuations. This is due to the sharp
decrease of the diffusion coefficientD ¼ DðgÞ, see Eq. (11).
Spatial fluctuations of the density nðx; tÞ impose a bottleneck
on the recombination in one-dimensional systems [36],
because for fermions to recombine they first have to come
close to each other. In contrast to the usually studied reaction-
diffusion systems, in the present case the bottleneck arises
not because of the decrease of the density, but, in the first
place, because of the falloff of the diffusion coefficient. Once
the recombination becomes limited by diffusion, the change
of the fermion density becomes slower than in Eq. (15).
To estimate the density n� ¼ hnðt�Þi where the crossover

to diffusion-limited recombination occurs, we set the rates
_n of the recombination and diffusion processes equal to
each other. For the recombination, one can use Eq. (12),
_n ¼ −wn2. For the diffusion, one can use Eq. (11) where
the mean interparticle distance 1=hni is chosen as a spatial
scale on which the density fluctuates. This gives

n� ¼ hnðt�Þi ¼ kwðg�Þ=Dðg�Þ; g� ¼ gðt�Þ; ð16Þ
where k ∼ 1. An alternative way of estimating n� is
described in Sec. IV of the SM [30].
Equations (14)–(16) relate the crossover value of g ¼ g�

to the value gth where thermal equilibrium is broken. Since
g�, gth are close to the critical point g ¼ 1, it is convenient to
switch to variable z ¼ βð1 − gÞ, with z� ¼ βð1 − g�Þ
expressed in terms of zth ¼ βð1 − gthÞ as follows:

μðβ=αÞ2z1=2th expð−zthÞ ¼ z3=2� ðz� − zthÞ; ð17Þ
where μ ¼ cD=8k

ffiffiffiffiffiffiffi
2π3

p
; note that β=α ≫ 1.

Equations (14)–(17) express the crossover density n� in
terms of the speed j_gj.

Beyond the crossover point, g < g� (i.e., t > t�), the
diffusion-controlled decrease with time of the already-small
fermion density is further significantly slowed down
compared to Eq. (15). If we stop QA once g� is reached,
n� gives the approximate solution of the annealing prob-
lem. Unexpectedly, the dependence of n� and g� on j_gj is
nonmonotonic, see Fig. 2. The optimal (minimal with
respect to j_gj) value of n� is

nopt ≈ ½8πkα2=cDβ3�z3=2opt ; ð18Þ
where zopt ≡ βð1 − goptÞ ≈ log½μðβ=αÞ2� is the value of z�
where n� is optimal. The optimal speed is

j_gjopt ≈ ð64kπ2Jα3=cDβ5ℏÞ lnðβ2=α2Þ1=2: ð19Þ
Equation (9) suggests that, in the considered dissipative
system, QA can be started at the critical point. Then the
time zopt=βj_gjopt to reach gopt is a small portion of the total
time to reach g ¼ 0, which is j_gj−1opt. The density nopt is
extremely small for weak coupling, α ≪ 1, and low
temperatures, β ≫ 1, and it rapidly decreases with decreas-
ing α and kBT=J.
The evolution of the fermion density for t > t� can

be roughly estimated from the scaling equation
h _ni ¼ −k0DðgÞhni3, cf. [36], where k0 ∼ 1. Because of
the sharp decrease of DðgÞ with increasing 1 − g, the
solution of this equation for 1 − g ¼ Oð1Þ weakly depends
on gðtÞ. For the optimal speed (19) such saturation density
is hni ∼ nopt= lnðβ=αÞ ≪ nopt.
It is instructive to compare the optimal speed (19) with

the speed j_gjKZ that would lead to the same saturation
density, nopt= lnðβ=αÞ ¼ nKZ, due to the Kibble-Zurek
mechanism of the creation of excitations in the absence
of coupling to the environment. From Eqs. (3) and (19),

_gopt=_gKZ ∝ ðβ=αÞ lnðβ=αÞ2 ≫ 1: ð20Þ
Therefore, the time it takes to reach the approximate
solution (18) in a closed quantum system is much larger
than in our case.
It is instructive also to compare j_gjopt with the speed of

annealing based on the classical Glauber dynamics [26]. In
this dynamics, for kBT ≪ J excitations in the Ising spin
chain are eliminated through diffusion of kinks. If the
transition rate for a kink to move to a neighboring site is wG
and the initial density of the kinks is ∼1, the time tclass to
reach density n ≪ 1 is ð8πwGn2Þ−1 [26]. In terms of our
model, the uncertainty relation imposes a limitation
wG ≪ J=ℏ. Therefore the ratio of the times to reach
nopt= lnðβ=αÞ via classical and quantum diffusion is very
large, ∼tclassj_gjopt ∝ β=α ≫ 1.
The results demonstrate that quantum diffusion near

the critical point provides an important mechanism of the
speed-up of QA. The diffusion occurs over states that are
large quantum superpositions of spin configurations

(a) (b)

FIG. 2. Fermion density (a) vs the distance to the critical point
and (b) vs the annealing rate. In (a), the filled region is bound by
the thermal distribution nthðgÞ. The black line shows the non-
equilibrium density hni for α ¼ 0.06, β ¼ 25, and
j_gj ¼ j_gjopt ¼ 2.85 × 10−7, see Eq. (12). The blue point marks
the crossover value g�. For g < g� spatial correlations become
strong and the theory is inapplicable. In (b), the red, blue, green,
and black lines show the scaled density ~n� ¼ cdβ3n�=8kπα2 vs
the scaled QA rate v ¼ ℏβ3j_gj=4 ffiffiffiffiffi

2π
p

Jα for log μ ¼ 8, 9, 10, 11,
respectively [parameter μ ∝ ðβ=αÞ2 is defined in (17)]. The
minimal density nopt ¼ min n�. The dashed sections of the lines
refer to the regions where the asymptotic theory does not apply.
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separated by theHammingdistance∼βg½αð1 − gÞ�−1 ≫ 1 of
the order of the mean free path of a fermion. The bottleneck
of QA in an open system can be imposed by the sharp
slowing-downof the diffusion behind the critical region. The
crossover to slow excitation recombination is accompanied
by the onset of significant spatial fluctuations of the
excitation density even in the absence of disorder. At the
crossover, the residual density of excitations nonmonotoni-
cally depend on the quantum annealing rate j_gj. Its minimum
provides the optimal value of the rate. This value scales with
the coupling constant and temperature as α3T5, and the
optimal excitation density is ∝ α2T3. Importantly, the
optimal speed j_gjopt is independent of the system size.
For our simple but nontrivial example of QA, attaining

the approximate solution [40] via the quantum-diffusion-
mediated process is faster than via classical diffusion or the
closed-system QA. One might expect that, in higher-
dimensional systems, quantum diffusion over extended
states could provide an efficient route to finding approxi-
mate solutions in the presence of disorder above the many-
body mobility edge [41].
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