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We study a strongly interacting dense hard-sphere system confined between two parallel plates by event-
driven molecular dynamics simulations to address the fundamental question of the nature of the 3D to 2D
crossover. As the fluid becomes more and more confined the dynamics of the transverse and lateral degrees
of freedom decouple, which is accompanied by a diverging time scale separating 2D from 3D behavior.
Relying on the time-correlation function of the transversal kinetic energy, the scaling behavior and its
density dependence is explored. Surprisingly, our simulations reveal that its time dependence becomes
purely exponential such that memory effects can be ignored. We rationalize our findings quantitatively in
terms of an analytic theory which becomes exact in the limit of strong confinement.
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Introduction.—Transport of particles in nanoconfine-
ment is of great scientific and industrial importance, with
applications in heterogeneous catalysis [1], oil recovery [2],
or lubrication [3–6]. In recent years artificial nanoporous
materials such as metal organic frameworks [7,8], zeolites
[9,10], and biocompatible scaffolds [11] have also triggered
many novel applications, including gas storage [12], repair-
ing or regenerating tissues [11], size-selective molecular
sieving [13], lab-on-a chip technology, and nanofluidics
[14,15]. The efficiency of such nanodevices often crucially
depends on higher surface to volume ratio, such that the
distance between the confiningwalls may even reach atomic
scale [16], or the system effectively becomes quasi-2D.
Nevertheless, despite its long history, a deep understanding
of the transport mechanisms in nanoconfinement and how
the dimensional crossover occurs dynamically is still far
from satisfactory.
Early theoretical studies on transport in nanoconfine-

ment starting from Knudsen [17] and Smoluchowski [18]
focused on dilute hard-sphere gases where exact results
could be obtained analytically in the low-density limit [17–
22] by assuming particle-wall collisions as diffusive. In
contrast, confinement effects on dense strongly interacting
systems have only recently come into focus [23]. There, the
simplest geometry to investigate the effects of strong
confinement is a slit where fluid particles are restricted
to a narrow space between two smooth parallel plates, but
also tubes or spherical confinements have been realized
experimentally [24–26]. Computer simulations and experi-
ments for the planar confinement have revealed an exotic
equilibrium phase behavior due to commensurable stacking
[27–34] as well as the hexatic phases in the limit of quasi-
2D confinement [35,36]. Confinement induced order-
disorder phase transitions for certain nonpolar liquids have
also been reported in several experiments [37], but the
interpretation has been challenged in favor of a glass
transition [38–40]. The structural properties of strongly

confined liquids have been measured directly only recently
by x-ray scattering [41,42].
The structural changes by the confinement also have

drastic ramifications for the dynamic properties. For
instance, the role of local order has been elucidated within
a remarkable empirical scaling of the diffusivity or struc-
tural relaxation times with the excess entropy [43–46].
Complementarily, a microscopic theory for the dynamics in
confinement is the mode-coupling theory that predicts a
multiple reentrant in a glassy phase as the plate separation
is varied [33,47,48].
From a more fundamental point of view, one would like

to know how the dimensional crossover from a 3D bulk
liquid to a (quasi-)2D system occurs. For the thermody-
namic and structural properties, it has been shown recently
that a small parameter emerges such that the convergence to
a 2D system including leading corrections can be proven
[49]. The key observation there was that in strong confine-
ment the canonical ensemble for the fluid in a slit geometry
decouples into a two-dimensional fluid in the lateral plane
and an ideal gas in the transversal direction. However, the
consequences of the weak coupling between lateral and
transversal degrees of freedom for slow equilibration and
how time-dependent correlation functions will be affected
by coupling to the “other dimension” have remained mostly
unexplored.
In this Letter, we now address the dynamical confine-

ment problem and demonstrate that as the fluid becomes
more and more confined, a singular time scale emerges
separating 2D from 3D behavior. The dependence of this
divergent time scale on the plate separation and the packing
fraction will be worked out analytically including the
prefactor and validated by simulations.
Simulation.—We investigate a fluid of hard spheres of

diameter σ confined between two flat parallel hard walls
with accessible slit width L; see Fig. 1. Trajectories are
computed by event-driven molecular dynamics with initial
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velocities drawn from a Maxwell-Boltzmann distribution
with thermal velocity vth ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
, which also sets the

natural time scale t0 ¼ σ=vth. We focus on small wall
separations L=σ ¼ 0.01;…; 0.5 < 1 such that only a single
monolayer fits between the plates and consider systems at
2D packing fractions φ2D ¼ ðπ=4Þσ2N=A ¼ 0.1;…; 0.8
for N particles per area A, such that the highest densities
are already beyond the freezing transition.
To unravel the divergent time scale, we choose an

observable that displays nontrivial dynamics exclusively
due to the weak coupling of the transversal to the lateral
degrees of freedom. Since in the decoupled ensemble the
lateral degrees of freedom evolve just like in a confined
ideal gas, a natural candidate is the transversal kinetic
energy ϵ⊥s ðtÞ ¼ ðm=2Þ½v⊥s ðtÞ�2 of a tagged particle, i.e.,
any s ∈ f1;…; Ng, and v⊥s ðtÞ is the fluctuating velocity
perpendicular to the plates. We therefore monitor the time-
correlation function,

T⊥
s ðtÞ ¼ hδϵ⊥s ðtÞδϵ⊥s ð0Þi; ð1Þ

of the fluctuations δϵ⊥s ðtÞ ¼ ϵ⊥s ðtÞ − kBT=2. From the
Maxwell-Boltzmann distribution one readily computes
its initial value, T⊥

s ð0Þ ¼ hjδϵ⊥s j2i ¼ ðkBTÞ2=2.
The simulation results are displayed in Fig. 2(a) for the

moderate packing fraction φ2D ¼ 0.4 (well below the two-
dimensional freezing transition to a triangular phase
φfreezing
2D ≈ 0.69 [27,29,49]) for accessible plate separations

covering two decades. One infers that the characteristic
time scale increases by 4 orders of magnitude as the plate
separation is decreased by a factor of 100, while the shape
of the relaxation function becomes independent of the
plate distance for small L. This suggests that data collapse
can be achieved upon proper rescaling with the measured
relaxation time. Plotting the data on a semi-log plot then
demonstrates that for small L the data follow a pure
exponential expð−t=τÞ even at the smallest time scales;
see Fig. 2(b). Deviations become apparent only at the
largest distance considered, L=σ ¼ 1.
The relaxation times τ ¼ τðL;φ2DÞ extracted from the

simulations, see Fig. 3, approach a divergence ∼L−2 for all
packing fractions considered, the power law being an
excellent description of the data already at wall separations
L=σ ≲ 0.5. Dimensional analysis suggests that in this
regime the relaxation rate should read

τ−1 ¼ t−10

�
L
σ

�
2

Aðφ2DÞ; ð2Þ

where the prefactor Aðφ2DÞ depends on the packing fraction
only. The prefactors Aðφ2DÞ as measured from the simu-
lation data, displayed in Fig. 4, increases smoothly with the
packing fraction; in particular, it grows stronger than the
packing fraction itself.

FIG. 1. Schematic cross section of hard spheres of diameter σ
confined to a slit of accessible width L. For two colliding spheres
the velocity transfer is directed along the connecting vector σe,
which lies almost parallel to the walls for small widths L.

(a)

(b)

D

FIG. 2. (a) Decay of the time-correlation function T⊥
s ðtÞ of the

transversal kinetic energy for φ2D ¼ 0.40 and various wall
separations L. Wall distance decreases from left to right. (b) Same
data in semi-log plot after rescaling with the measured relaxation
time τ. As a guide to the eye, the dashed line indicates a pure
exponential decay, ∼ expð−t=τÞ.

D

D

FIG. 3. Relaxation time τ for the strongly confined liquids as a
function of the wall separation L for various packing fractions
φ2D. Packing fraction increases from top to bottom. The dashed
line is a power law ∼L−2 and serves as a guide to the eye.
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Theory.—The coordinates and velocities of the particles
split naturally into lateral and transversal degrees of
freedom, xn ¼ ðx∥

n; x⊥n Þ, vn ¼ ðv∥n; v⊥n Þ, n ¼ 1;…; N, and
the confinement restricts the transversal coordinates to
jx⊥n j ≤ L=2; see Fig. 1. The time evolution of an observable
AðtÞ ¼ AðfxnðtÞg; fvnðtÞgÞ is inherited from the trajecto-
ries and is formally encoded in AðtÞ ¼ expðiL�tÞA; t≷0,
with the pseudo-Liouville operator [50,51]

iL� ¼
X
n

vn ·
∂
∂xn

þ
X
n

Ŵ�ðnÞ þ
X
m<n

T̂�ðm; nÞ: ð3Þ

Here, the first term describes merely the free-streaming
motion, while the operator Ŵ�ðnÞ in the second term
accounts for the collision of particle n with the hard walls.
Explicit expressions are readily derived following the
standard method [51] but will not be needed in the
following. The interaction between the hard spheres is
encoded in the binary collision operator:

T̂�ðmnÞ ¼ σ2
Z

deΘð∓ vmn · eÞjvmn · ej

× δð3Þðxmn − σeÞ½b̂eðmnÞ − 1�: ð4Þ

Here, e is a unit vector and the integral extends over the unit
sphere. The normal component of the relative velocity of
the colliding pair vmn · e ¼ ðvm − vnÞ · e (multiplied by the
infinitesimal time dt) defines the collision cylinder. The
Heaviside step function Θð·Þ selects approaching or dis-
tancing particles and the δ function ensures the contact
condition for the collision and determines the unit vector e.
The operator b̂eðmnÞ acts only on the velocities vm and vn
and replaces them by the velocities ~vm; ~vn after the
collision:

beðmnÞvm ≔ ~vm ¼ vm − eðe · vmnÞ;
beðmnÞvn ≔ ~vn ¼ vn þ eðe · vmnÞ: ð5Þ

The coupling between the transversal and lateral degrees
of freedom occurs only via the collisions T̂�ðmnÞ. Yet, if the
accessible slit width is much smaller than the hard-sphere
diameter,L ≪ σ, the unit vector e ¼ ðe∥; e⊥Þ for the contact
condition satisfies je⊥j ≤ L=σ ≪ 1; je∥j≃ 1, see Fig. 1,
such that the momentum transfer is almost planar. This
insight suggests that the collision operator may be replaced
to leading order by its two-dimensional analogue T̂∥

�ðmnÞ,
where the contact condition δð3Þðxmn − σϵÞ↦δð2Þðx∥

mn −
σe∥Þδðσe⊥Þ in Eq. (4) is replaced by a collision within
the plane. Then the pseudo-Liouville operator naturally
decomposes,

iL� ¼ iL⊥
� þ iL∥

� þ iLint
� ; ð6Þ

whereL⊥
� accounts for the transversal degrees of freedom of

a confined ideal gas,L∥
� corresponds to the time evolution of

a two-dimensional hard-disk fluid, while the residual
interaction is encoded in

iLint
� ¼

X
m<n

½T̂�ðm; nÞ − T̂∥
�ðm; nÞ�: ð7Þ

The idea is that iLint
� induces only aweak coupling. Ignoring

this contribution leads to a decoupled ensemble of interact-
ing lateral degrees of freedom and an ideal gas of transversal
degrees of freedom. This weak coupling therefore introdu-
ces a time scale up to which the coupling of the degrees of
freedom is irrelevant. As the plate separation becomes
smaller, this time scale is expected to grow.
The transversal kinetic energy is conserved in the

decoupled ensemble ∂tδϵ
⊥
s ¼ iLint

� δϵ⊥s and the decay of
its time correlation function T⊥

s ðtÞ directly reflects the
small coupling. Relying on the Zwanzig-Mori projection
operator formalism [52,53], an exact equation of motion
(e.o.m.) can be readily derived [54] for t > 0:

_T⊥
s ðtÞ þ τ−1T⊥

s ðtÞ þ
Z

t

0

K⊥
s ðt − t0ÞT⊥

s ðt0Þdt0 ¼ 0: ð8Þ

Here, the second term describes an instantaneous relaxa-
tion, whereas the convolution integral accounts for the
retarded friction due to correlated sequences of collisions.
A short-time expansion of the e.o.m., Eq. (8), yields
T⊥
s ðtÞ=T⊥

s ð0Þ ¼ 1 − t=τ þOðt2Þ, and the convolution inte-
gral over the memory kernel K⊥

s ðtÞ contributes only to
orderOðt2Þ. Direct expansion of δϵ⊥s ðtÞ ¼ expðiL�tÞδϵ⊥s in
powers of t in T⊥

s ðtÞ yields for the relaxation rate the
microscopic expression

τ−1 ¼ hδϵ⊥s ð∓ iLint
� δϵ⊥s Þi

2

ðkBTÞ2
: ð9Þ

D

D

D
D

FIG. 4. Prefactor Aðφ2DÞ for the scaling behavior of the
relaxation rate τðL;φ2DÞ−1 ¼ t−10 ðL=σÞ2Aðφ2DÞ as a function
of 2D packing fraction φ2D. The shaded area indicates the
ordered phase. The inset shows the 2D radial distribution function
at some representative packing fractions. The solid lines are from
the Ornstein-Zernike relation using the Percus-Yevick closure,
whereas the symbols are from simulations.
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For the memory kernel, a microscopic expression also
follows,

K⊥
s ðtÞ ¼ hQLintþ δϵ⊥s je−iQL−QtjQLint

− δϵ⊥s i
2

ðkBTÞ2
; ð10Þ

where Q projects onto the subspace orthogonal to δϵ⊥s and
the bracket corresponds to Kubo’s scalar product [52–54].
Since the memory kernel contains at least two operators
Lint
� , which we identified as small perturbation, the retarded

convolution term in Eq. (8) becomes negligible with respect
to the instantaneous relaxation. Then the e.o.m. [Eq. (8)]
simplifies to an exponential relaxation as leading behavior
consistent with our simulation results.
The relaxation rate, Eq. (9), involves an equilibrium

average of essentially the collision operator. Its direct
evaluation becomes feasible for strong confinement relying
on the decoupling property of the ensemble into lateral and
transversal degrees of freedom, as well as the usual decou-
pling of the structural and kinetic degrees of freedom. The
second crucial ingredient is that the unit vector e ¼ ðe∥; e⊥Þ
for the contact condition becomes more and more confined
to the planar direction, je⊥j ≤ L=σ ≪ 1. By the collision
rule, Eq. (5), ~v⊥s ¼ v⊥s þ e⊥ðe · vmsÞ, the transverse velocity
remains almost unchanged after a collision. After perform-
ing the structural and kinetic averages, we obtain as leading
contribution (see Supplemental Material [54])

τ−1 ¼ 16φ2D

3
ffiffiffi
π

p
�
L
σ

�
2

gðσÞt−10 ; ð11Þ

where gðσÞ is the radial distribution function of the two-
dimensional hard-disk fluid at contact. The factor φ2DgðσÞ
accounts for the probability of a scattering event similar to
Enskog’s theory for bulk hard-sphere fluid [52]. In contrast
to the 3D case, here it arises as an exact result valid at any
packing fraction φ2D. The decoupling of the lateral and
transversal degrees of freedom is encoded in the factor
ðL=σÞ2 reflecting the small momentum transfer in quasi-
planar collisions.
The radial distribution function gðrÞ can be evaluated

within integral equations theory [52]. Here we rely on a
numerical solution of the 2D Percus-Yevick closure relation
[60] that compares quantitatively to our measured gðrÞ in
the simulation; see Fig. 4. Using the contact value gðσÞ the
prefactor Aðφ2DÞ for the relaxation rate in Eq. (2) can be
compared to the analytic result, Eq. (11). The comparison
in Fig. 4 for low to moderate packing fractions φ2D
corroborates that the theoretical prediction is in fact an
exact result.
Conclusions.—We have demonstrated the emergence of

a divergent time scale for the coupling of lateral to
transverse degrees of freedom in a strongly confined fluid.
The main insight has been that in collisions the momentum
transfer becomes more and more planar as the wall

separation is reduced. The dependence of the divergent
time scale on the plate separation and packing fraction of
the fluid has been worked out analytically including the
prefactor by evaluating the dominant contribution of the
collision operator and compared to our simulations.
Remarkably, the theory is not limited to fluids but also
applies to the ordered phase. We emphasize that the
reference system is strongly interacting, and our calculation
is one of the rare cases where analytic results can be
elaborated.
The mechanism unraveled for the emergence of a slow

time scale and the scaling with the transverse dimension
should also hold for other geometries, such as liquids in
narrow cylindrical tubes or quasi-1D confinement (see
Supplemental Material [54]).
The hard-core interaction is of course an idealization of a

short-ranged potential, but we anticipate our results to
remain valid for the case of smooth potentials. More
precisely, for hard spheres the collisions are instantaneous,
whereas for smooth potentials the duration of a collision
introduces a new time scale into the problem. As long as the
Knudsen time scale L=vth, i.e., the typical time for a
particle to traverse the slit, is still much larger than the
duration of a collision, the mechanisms for small transverse
momentum transfer should be identical (see Supplemental
Material for simulation results on smooth potentials [54]).
Similarly, a smooth particle-wall interaction should not
modify our findings, provided its range is much smaller
than the slit width, and the transverse energy includes the
wall potential in addition to the transverse kinetic energy.
It is also of interest to consider the opposite case where

the duration of a collision is much longer than the time to
traverse the slit. Then the use of a collision operator is no
longer justified; rather, the collision events can be averaged
over the fast transverse oscillations. Analytic progress in
this direction has been made very recently [61], and it turns
out that the predicted relaxation time for this case scales
with a different power in the wall separation. Furthermore,
the relaxation of the kinetic energy becomes exponential at
times much longer than the Knudsen time, while for hard
spheres it is exponential for all times.
The diverging relaxation time separates the decoupled

two-dimensional dynamics from the coupled one in strong
confinement. This should have drastic implications for
systems in the vicinity of the glass transition such that the
divergent structural relaxation time competes with the
relaxation time of the coupling. In fact, the mode-coupling
theory for confinement [47] suggests that the limits t → ∞
and L → 0 do not commute and different glassy dynamics
on different time scales is expected.
The decoupling property of the transverse and lateral

degrees of freedom in the equilibrium ensemble implies a
divergent time scale for their dynamic coupling. The
precise form of the divergence should depend on the
microdynamics and should be different for the case of
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Brownian dynamics, which can be realized experimentally
for colloids confined between glass plates. Yet, to measure
the divergent time scale in this case an observable needs to
be chosen that does not relax quickly to equilibrium even
without the close-to-planar collisions. An example could be
the in-plane self-intermediate scattering function Fsðq; tÞ at
small wave numbers q, which probes the planar dynamics
at large lateral length scales 2π=q. Upon decreasing the
wave number the relaxation time slows down as ∼q−2 by
diffusion and the crossover from purely 2D motion to the
3D confined coupled dynamics should be visible. A
second, more challenging candidate for such an observable
is the generalized intermediate scattering functions for
fluids close to the glass transition.

We gratefully acknowledge many discussions with
Rolf Schilling on our simulation results and on the
emergence of the diverging time scale. This work has been
supported by the Deutsche Forschungsgemeinschaft DFG
via the Research Unit FOR1394 “Nonlinear Response to
Probe Vitrification.”
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