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Collective phenomena emerging from nonlinear interactions between multiple oscillators, such as
synchronization and frequency locking, find applications in a wide variety of fields. Optomechanical
resonators, which are intrinsically nonlinear, combine the scientific assets of mechanical devices with the
possibility of long distance controlled interactions enabled by traveling light. Here we demonstrate light-
mediated frequency locking of three distant nano-optomechanical oscillators positioned in a cascaded
configuration. The oscillators, integrated on a chip along a common coupling waveguide, are optically
driven with a single laser and oscillate at gigahertz frequency. Despite an initial mechanical frequency
disorder of hundreds of kilohertz, the guided light locks them all with a clear transition in the optical output.
The experimental results are described by Langevin equations, paving the way to scalable cascaded
optomechanical configurations.
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Synchronization and frequency locking have been
observed in a large variety of contexts ranging from physics
to biology, e.g., in classical coupled pendula [1], in coupled
lasers [2], and in the rhythmic beating of pacemaker cells
[3]. These phenomena have found practical applications in
rf communication [4], signal-processing [5], novel comput-
ing and memory concepts [6,7], clock synchronization and
navigation [8], as well as in phased locked loop circuits [9].
For these applications, micro- and nanomechanical devices
are known to present opportunities of integration and
scalability [10–15] but, more recently, optomechanical
systems further emerged as new appealing candidates.
Indeed, they support nonlinearly coupled optical and
mechanical modes [16,17], and add to the mechanics the
assets of optical techniques in terms of precision and long-
distance communications [18–25].
Light injected in an optomechanical cavity can deform it

under the action of optical forces, and in the dynamical
backaction regime can amplify its mechanical motion.
When amplification overcomes mechanical dissipation,
the system transits to a stable limit cycle, often referred
to as optomechanical self-oscillation [26,27]. In the last
years, several studies investigated the synchronization of
such optomechanical oscillators [20–22,25]. The local
synchronization of two oscillators placed close to contact
and sharing a common optical mode was reported in
Ref. [20]. Recently, the same configuration was pushed
up to 7 resonators [25]. Two spatially separated oscillators
integrated in a common optical racetrack cavity were also
synchronized in Ref. [22]. The possibility of locking two
optomechanical systems at distance without sharing a

common optical mode was implemented as well in
Ref. [21], in two steps and with two lasers. The optical
output of a first laser-driven optomechanical oscillator was
transduced into an electrical signal, which was carried away
to feed a distant electro-optic modulator. The latter modu-
lated a second laser driving a second optomechanical
oscillator, ultimately insuring mechanical phase locking
of the two. This master-slave electro-optic configuration
enabled locking two systems at long distance but required
one extra laser and modulator per added oscillator. It also
erased the optical phase information between connected
systems. An all-optical configuration linking multiple
distant oscillators would allow for scalable optomechanical
networks and for controlled phase relations between sites.
It remains to be explored.
Here, we demonstrate the all-optical light-mediated

locking of multiple spatially distant optomechanical
oscillators, achieved using a single laser source.
Optomechanical disk resonators, each supporting its own
localized optical and mechanical mode, are placed in a
cascaded configuration and unidirectionally coupled
through a common optical waveguide [See Fig. 1].
Optical and mechanical modes show a remarkably low
site-to-site disorder of a few 10−4, which results from
moderate residual fabrication imperfections. We take ad-
vantage of thermo-optic effects to lower even further the
optical disorder (below 10−5) and inject light simultane-
ously in all the resonators, eventually locking their very
high-frequency (GHz) mechanical oscillations. We present
results for configurations with one, two, and three opto-
mechanical oscillators. The experimental results are in
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qualitative agreement with theoretical calculations based on
a minimal model that considers a single optical and
mechanical mode per disk resonator. The results for optical
and mechanical fields are obtained by solving the corre-
sponding stochastic Langevin equations within the trun-
cated Wigner approximation [28,29], an approach that can
be extended to arbitrary complex cascaded configurations.
Optomechanical cascades are naturally scalable and lend
themselves to both on-chip integration, like demonstrated
here, or long-distance fibered networks.
On the device side, we employ gallium arsenide (GaAs)

optomechanical disk resonators. Arrays of miniature disks
supported on their pedestal as shown in Figs. 1(a) and 1(b),
are fabricated out of a GaAs/aluminium gallium arsenide
(AlGaAs) heterostructure wafer [30]. A picture of the
complete sample structure is shown in the Supplemental
Material (Fig. S1) [31]. Miniature disks support both
optical whispering gallery modes (WGMs) and mechanical
radial breathing modes (RBMs) [34] that strongly couple
through radiation pressure and photoelasticity, reaching an
optomechanical coupling g0 in the MHz range [35]. This
enables fine optical control of mechanical motion in a large
variety of physical environments, from cryogenic operation
to liquid immersion [36,37]. Monochromatic light at λ ¼
1.3 μm is evanescently coupled into the disks through
integrated GaAs tapered waveguides [38], which also
embed inverted tapers as input and output ports to suppress
light back reflections (see Supplemental Material, Figs. S2
and S3 [31]). The disks dimensions are 320 nm in thickness
and 1.5 to 2 μm in radius. The pedestals are 1.7 μm high
and their radii are smaller than 150 nm to minimize
anchoring mechanical losses [36]. On the same chip, we
include waveguides that address one, two, and three disks
in a unidirectional fashion. Disks are spatially separated by
approximately 25 μm thereby avoiding direct mechanical
and near-field optical couplings.

On the theoretical side, we model the driven-dissipative
dynamics of N sequentially coupled optomechanical res-
onators [see sketch in Fig. 1(c)] by applying a stochastic
method based on the truncated Wigner representation
[28,29,39]. Note that this is equivalent to the Langevin
approach in Ref. [24]. In the truncated Wigner approxi-
mation, the master equation for the density matrix is
mapped onto a differential equation for the Wigner func-
tion, which is truncated by retaining only its lowest order
derivatives. The resulting Fokker-Planck equation is con-
verted into stochastic Ito differential equations for the
2N complex scalar fields fαkgk¼1;…;N for the optics and
fβkgk¼1;…;N for the mechanics. This approach is valid for
moderate nonlinearities for which the Wigner function
remains positive (hence neglecting photon and/or phonon
blockade effects [40]), which is the case in the present
context. In the driving rotating frame, the obtained equa-
tions read
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similar to Ref. [41], where Ωk denotes the mechanical
frequency of the kth optomechanical resonator, while Δk ¼
ωp − ωk is the optical detuning between the optical drive
and the kth cavity eigenfrequency. The optical and
mechanical loss rates are κ and Γ, respectively. The
stochastic terms ξα (ξβ) denote the optical (mechanical)
Langevin noise at room temperature, with correlations
given by hξαkðtÞξαk0 ðt0Þi ¼ ðκ=2Þδðt − t0Þδðk − k0Þ and
hξβkðtÞξβk0 ðt0Þi ¼ ðΓ=2Þðnth þ 1

2
Þδðt − t0Þδðk − k0Þ with nth

the thermal mean number of phonons (see Supplemental
Material [31]). The optical input αink ¼ αpump

k þ αcavk is the
sum of two distinct coherent contributions. αpump

k ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Plaser=ðℏΩLÞ

p
eiϕk is the driving input traveling up to

the kth cavity, while αcavk ¼ −
P

l<k

ffiffiffiffiffi
κel

p
αleiϕl→k is the

input field leaking out of the disks upstream.
Experimental and theoretical methodologies being intro-

duced, let us now discuss the core of our results. We
experiment first on a waveguide evanescently coupled to a
single disk. By lowering the laser input power Plaser down
to 1 μW, and scanning the laser wavelength, we measure
the optical spectrum of the system through the wave-
guide transmission. We observe WGMs resonances
(Supplemental Material Fig. S4 [31]), in the form of
doublets corresponding to hybrid clockwise-counterclock-
wise modes [42], with intrinsic optical quality factor of
about 105. Then, we increase Plaser to 1 mW and observe a
thermal distortion of the optical resonance while scanning
(Supplemental Material, Fig. S4) [31]. This is known to
result from the thermo-optic effect [43] induced by the laser

(a)

(c)

(b)

FIG. 1. (a) Side view and (b) top view, scanning electron
microscope (SEM) images of a device consisting of 3 GaAs
optomechanical disk resonators with identical nominal dimen-
sions (radius of 1.5 micron and thickness of 320 nm) coupled to a
common GaAs suspended tapered waveguide. The square-shaped
pads are supports for the suspended optical waveguide and have
no optomechanical impact. (c) A sketch of the unidirectional
cascaded configuration containing multiple optomechanical disks
along a common waveguide.
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heating of the GaAs disk [44]. The temperature rise in the
disk ΔT can be estimated from the shift of the optical
WGM resonance Δλ using the relation ΔT ¼ nðΔλ=λÞ=
ðdn=dTÞ, with n the disk refractive index. At the largest
optical power employed in our experiments, Δλ≃ 5 nm,
corresponding to ΔT ≃ 60 K. In this large optical power
regime, we now step scan the laser wavelength over the
blue flank of the optical WGM resonance, and acquire the
radio-frequency spectrum of transmitted light for each
wavelength step. The results are shown in Fig. 2(a).
When sufficiently blue-detuned (blue curve), the power
in the cavity is too low to induce optomechanical dynami-
cal backaction and the spectrum reveals the sole thermo-
mechanical disk vibration. Measurements in this regime
show an intrinsic mechanical quality of about 103. As the
laser wavelength, and, consequently, the optical power in
the cavity, are progressively increased, the mechanical
motion gets amplified through dynamical backaction [blue

to green curves in Fig. 2(a)], until the optomechanical
amplification and dissipation finally attract the resonator to
the self-oscillation limit cycle associated to an abrupt line
narrowing in the spectrum [green to red curves in Fig. 2(a)].
At this stage, we obtain a laser-driven nano-optomechanical
oscillator, whose optical output will be propagated to other
disks below. Note that the mechanical properties of the
GaAs disk are also affected by the laser-induced temper-
ature increase, mainly because of the material softening,
and a drift towards lower mechanical frequencies is
observed as the optical detuning Δ is progressively
decreased on the blue flank (blue to red curve, see the
Supplemental Material [31], section on thermo-optical
effects).
We then experiment on a waveguide addressing two

cascaded disks. When using low enough laser power, we
observe a pair of doublets corresponding to the reso-
nances of each disk [Supplemental Material [31],
Fig. S4(b)]. Doublets are separated by about 400 pm
in wavelength, showing a relative optical disorder of
∼3 × 10−4. We then set the laser power to 1 mW,
inducing thermal distortion of the optical resonances.
The related thermo-optic wavelength shift is much larger
than the initial optical disorder, enabling simultaneous
injection of light in both disks with the same single laser
(see Supplemental Material [31], section on thermo-
optical effects). Such thermo-optic compensation enables
us to reduce the effective optical disorder at a value that
we estimate below 10−5 (see Supplemental Material [31],
section on optical disorder). Figure 2(b) shows the
evolution of the rf spectrum of light outcoupled from
the waveguide when the laser wavelength progressively
increases starting on the blue flank of the WGMs
resonances. Again, when the circulating power in the
disks is sufficiently low, we measure the mere thermo-
mechanical vibration of both disks. As a consequence of
the low mechanical disorder, smaller than the mechanical
linewidth, the independent mechanical resonances of the
two disks are spectrally overlapped and indistinguishable
[blue curve]. As the laser wavelength further increases,
therefore increasing the effective power in the disks, the
motion of both disks is amplified. At this stage, thanks to
the associated line narrowing, their respective resonances
become distinguishable (light blue trace), revealing a
mechanical disorder of about 10−4. Further increasing
the laser wavelength, the two disks enter into the self-
oscillation regime, and multiple resonance peaks arise.
This set of peaks at frequencies fω≃Ω1 � pðΩ1 −
Ω2Þgp∈N are generated by nonlinear frequency mixing.
Ultimately, when the power in the two disks is large
enough, the multiple peaks merge into a single one,
indicating frequency locking of the two oscillators.
Now we consider the case of three optomechanical

resonators and follow the very same procedure, which is
intrinsically scalable. At low power, we observe three
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FIG. 2. (a) From right (blue curve) to left (red curve), power
spectral densities of a single optomechanical oscillator (2 μm
radius and 320 nm thickness) for increasing laser wavelength λ
(Supplemental Material [31], Fig. S4 and section on thermo-
optical effects) and Plaser ¼ 1 mW. We first observe the back-
ground thermal motion, then the motion is amplified and finally
reaches the self-oscillation regime. (b) From right (blue curve) to
left (red curve), power spectral density of two optomechanical
oscillators (1.5 μm radius and 320 nm thickness) for increasing
laser wavelength (see Supplemental Material [31], Fig. S4). We
successively observe the thermal vibration of both resonators,
then their amplification, the self-oscillation, the nonlinear mixing
of their resonances, and finally their phase locking. (c) Same as in
(b), but with 3 optomechanical oscillators.
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doublets corresponding to the resonances of each disk
[Supplemental Material [31], Fig. S4(c)]. The three disks
show the same level of relative optical disorder as the two
resonators above. Here again, at high power, the initial
optical disorder is corrected by means of the thermo-
optic compensation (Supplemental Material, Fig. S4).
Figure 2(c) shows a similar evolution of the rf spectrum
when increasing the optical wavelength on the blue flank
(blue to red trace). When the detuning is large, the
thermal vibrations of the disks are measured and the
independent resonances are indistinguishable. As the laser
wavelength increases, the respective mechanical resonan-
ces of the three disks become distinguishable thanks to
optomechanical amplification and line-narrowing (blue to
green trace). Further increasing the laser wavelength, the
three disks enter into the self-oscillation regime, and
multiple resonance peaks arise due to nonlinear frequency
mixing (green to orange trace). Then, two of the oscil-
lators lock as the density of peaks diminishes (pink trace).
Ultimately, the multiple peaks merge into a single one,
indicating the frequency locking of the three oscillators
(red trace). More details will become apparent when
analyzing this locked cascaded configuration in light of
our model.
The full spectrum evolution as a function of the

normalized detuning is shown in Fig. 3(a) for the three
oscillators case. In this latter figure, we have subtracted for

clarity the mechanical frequency drift induced by thermal
softening associated to laser heating. At small wavelength
(large detuning), the spectrum shows a few dark lines
corresponding to the onset of self-oscillation for the three
resonators. The density of lines increases as the detuning
decreases (laser wavelength increases) due to nonlinear
mixing, before the spectrum simplifies as two of the three
oscillators get locked together at Δ=Ω ∼ 3.8. The final step
is the locking of the three oscillators, with a marked
transition to a single peak [see a zoom in Fig. 3(b)].
In Fig. 3(c), we compare the experimental results with

the phenomenology predicted by the theoretical model. In
order to account for the mechanical frequency disorder,
we consider as example Ω1 ¼ Ωð1 − εÞ, Ω2 ¼ Ω, Ω3 ¼
Ωð1þ 1.23εÞ, with ϵ ¼ 5 × 10−4. For simplicity, apart
from the mechanical frequency disorder, we consider ide-
ntical parameters for the three optomechanical resonators,
namely, κ=Ω¼7.41, κel¼κe¼0.96Ω, Γ=Ω¼1.3×10−3.
Thanks to the thermo-optical compensation (see discus-
sion above and Supplemental Material, section on thermo-
optic effects and optical disorder), the optical detuning is
set to be identical for all optical resonators (Δk ¼ Δ). We
also set g0=Ω ¼ 6 × 10−4 for the optomechanical cou-
pling and Plaser ¼ 800 μW, following experimental con-
ditions. The evolution of the noise power density with the
detuning is plotted in Fig. 3(c) and shows that the phase-
locked state is achieved after an intermediate regime
displaying nonlinear frequency mixing, like observed in
experiments. A complementary view of the transition is
reported in Fig. 3(d): the standard deviation σχ3 of the
mechanical phase order parameter χ3 ¼ 1

3
jP3

j¼1ðβj=jβjjÞj
is shown versus normalized detuning. Indeed, the numeri-
cal integration of Eq. (1) gives access to the phase of the
mechanical fields, from which the phase order parameter
and its standard deviation can be computed. Locking of
the oscillators is obtained for σχ3 ¼ 0. For lower mechani-
cal disorder, our simple model predicts that phase-locking
occurs without an intermediate nonlinear frequency mix-
ing, therefore, more directly than experimentally. This
difference originates in part from the simplicity of our
calculations where the optomechanical coupling and
quality factor have been set equal for all resonators.
Additional simulations (not shown) indeed indicate that
individual self-oscillation thresholds are very sensitive to
disorder in the optomechanical coupling parameter. In
spite of these simplifications, our numerical results based
on a minimal model describe experiments well and
capture the right order of magnitude for the relevant
quantities.
In conclusion, we have experimentally demonstrated

locking of two and three very-high frequency nano-
optomechanical oscillators in a cascaded optical configu-
ration. At ultralow temperatures accessible to a dilution
fridge, the involved GHz mechanical resonators would be
ruled by mere quantum noise. We have employed a single

FIG. 3. (a) Experimental results: gray-scale map of the power
spectral density for the system of 3 optomechanical oscillators as
a function of the normalized detuning Δ=Ω. Note that the
thermomechanical shift has been subtracted for clarity, Ωth being
the thermally shifted mechanical frequency. (b) Zoom in (a). (c)
and (d) Numerical results obtained with the model described in
the text. (c) Gray-scale map of the power spectral density for 3
oscillators as a function of the detuning Δ=Ω for a mechanical
disorder ε ¼ 5 × 10−4. (d) Standard deviation σχ3 of the synchro-
nization order parameter as a function of the detuning Δ=Ω [same
vertical axis as in (c)], transiting to zero as phase locking occurs.
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laser and exploited the optical coupling between distant
mechanical systems mediated by an integrated waveguide.
With long-distance optical interactions, our results pave the
way to large-scale cascades and networks of optomechan-
ical oscillators with controlled phase relations. Our semi-
conductor devices being integrable, a variety of on-chip
configurations can be envisioned as well, for example, in
two dimensions for the development of topological opto-
mechanics [45,46] or for new devices in signal processing
and sensing. The study of such nonlinear dynamical
systems connected by light will offer an unprecedented
degree of control of interactions, be it in the classical or
quantum regime.
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