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We describe how quantum dot semiconductor cavity systems can be engineered to realize anisotropy-
induced dipole-dipole coupling between orthogonal dipole states in a single quantum dot. Quantum dots in
single-mode cavity structures as well as photonic crystal waveguides coupled to spin states or linearly
polarized excitons are considered. We demonstrate how the dipole-dipole coupling can control the radiative
decay rate of excitons and form pure entangled states in the long time limit. We investigate both field-free
entanglement evolution and coherently pumped exciton regimes, and show how a double-field pumping
scenario can completely eliminate the decay of coherent Rabi oscillations and lead to population trapping. In
the Mollow triplet regime, we explore the emitted spectra from the driven dipoles and show how a
nonpumped dipole can take on the form of a spectral triplet, quintuplet, or a singlet, which has applications
for producing subnatural linewidth single photons and more easily accessing regimes of high-field quantum
optics and cavity-QED.
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Introduction.—The ability to manipulate spontaneous
emission (SE) decay and coherent coupling between
quantum dipoles is a key requirement for many applications
in quantum optics, including the creation of entangled
photon pairs and qubit entanglers. Quantum dots (QDs) are
especially preferable for studying quantum optical effects
due to the large transition dipole moments. However, a
major problem with entangling excitons from spatially
separated QDs is due to their large inhomogeneous broad-
ening, leading to negligible photon-coupling rates. In 2000,
Agarwal [1] showed how vacuum-induced interference
effects from an anisotropic vacuum can lead to quantum
interference effects among decay channels of closely lying
states, even though the dipoles are orthogonal: anisotropic
vacuum-induced interference (AVI). Subsequently, there
have been several related theoretical works, though no
reported experiments to our knowledge. Li et al. [2]
demonstrated AVI using a 3-level atom in a multilayered
dielectric medium. Recently, Jha et al. [3] studied a QD
coupled to a metamaterial surface to predict AVI using
nanoantenna designs, which has the potential advantage of
remote distance control; the AVI was shown to allow a
population transfer between the orthogonal dipoles of around
1%, and similar proposals have been later reported by Sun
and Jiang [4]. While interesting, these studies are difficult to
realize experimentally, and the predicted population transfer
coupling effects are rather weak. Moreover, metalic meta-
material systems introduce significant losses [5,6], and large
Purcell factor regimes are also necessary in general.
In practical QD systems, large radiative decay rates are

usually required and more easily achieved in semiconductor
nanophotonic systems. For efficient single photon β factors,

slow-light PC waveguides have been shown to yield almost
perfect single photons on-chip [7]; such waveguides also
exhibit a rich polarization dependence, including points of
linear and circular polarization. Charge neutral QD excitons
in general exhibit either linear polarization or circular
polarization if the fine structure splitting (FSS) is negligible
[8–10], which can now be controlled with great precision
[11]. Charged QD excitons can also be used to study
interactions between single spins and photons [12], which
is important for quantum networks. It would thus be highly
desirable to study and exploit AVI effects in such geometries,
using realistic QD exciton states. Moreover, one would like
to go beyond the free-field case of vacuum dynamics and
study field-driven coupling via a pump field where such
effects can be more easily accessed and exploited exper-
imentally. Suppressing SE in QDs shows good promise for
low error rate quantum logic operations [13], and previous
attempts to do this are difficult and limited, e.g., using
photonic crystal (PC) bandgaps [14]; in addition, the
coherent generation of subnatural light from QDs has
applications for single photon sources [15], and allows
one to more easily access interesting strong field physics.
In this Letter, we introduce several practical, and

experimentally feasible, QD photonic systems that can
enable and exploit pronounced AVI, causing long-lived
entangled exciton states with an almost perfect means of
achieving population transfer and population trapping—a
feat that is not possible with spatially separated QD dipoles.
Figure 1 shows a schematic of QD exciton states and
example photonic systems including a microcavity with a
linearly polarized cavity mode, and a PC waveguide that
exhibits linear to circular polarization on the so-called L
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lines (or X points) and C points, respectively [16,17]. Such
systems provide a high degree of anisotropy needed for
observing AVI using QDs. Our significant findings are
(i) AVI produces long-lived entangled QD states with a
population transfer that is orders of magnitude larger than in
other systems, (ii) coherent pumping with two pump fields
creates a population trapping state in the form of a pure Bell
entangled state, and (iii) selective pumping of the transitions
enables one to study features of Mollow triplets that are
strictly due to AVI, e.g., where one excited dipole acts as the
pump for the other dipole and causes long-lived Rabi
oscillations.
Theory.—Photon transfer can be rigorously modeled

through the electric-field Green’s function Gðr; r0;ωÞ,
which describes the field response at r to a point source
at r0, and G is a second rank tensor. Planar PC waveguide
modes below the light line (ω ¼ cjkj) will propagate
without loss through an ideal structure and can be written
as fkωðrÞ ¼

ffiffiffiffiffiffiffiffiffi

a=L
p

ekωðrÞeikωx, where ekωðrÞ is the Bloch
mode, sharing the same periodicity as the lattice, a is the
PC pitch, and L is the structure length; ekωðrÞ is normalized
from

R

Vc
ϵðrÞekωðrÞ · e�kωðr0Þ ¼ δkω;k0ω , with Vc the spatial

volume of a PC unit cell. The waveguide Green’s function
is obtained analytically [18,19],

Gwgðr; r0;ωÞ ¼
iaω
2vg

½Θðx − x0ÞekωðrÞe�kωðr0Þeikωðx−x
0Þ

þ Θðx0 − xÞe�kωðrÞekωðr0Þeikωðx
0−xÞ�; ð1Þ

where the terms preceded by Heaviside functions corre-
spond to forward and backwards propagating modes,
respectively, and vg is the group velocity. To account for

coupling to other modes, one can simply add other terms to
the total Green’s function, though these are typically
negligible in comparison to the contribution from slow-
light Bloch modes.
For a single mode cavity system, with resonant fre-

quency ωc, decay rate κ, and mode profile fcðrÞ, the cavity
Green’s function is

Gcðr; r0;ωÞ ≈
ω2fcðrÞf�cðr0Þ
ω2 − ω2

c − iωκ
; ð2Þ

where at a field antinode the modes can be normalized
through jfcðr0Þj2 ¼ ηðrÞ=Veffεb, with εb the background
dielectric constant and ηðrÞ accounts for any deviations
from the mode antinode position and polarization. The
cavity quality factor, Q ¼ ωc=κ.
Working in a rotating frame with respect to a laser

frequencyωL, we derive the quantummaster equation (ME)
for the QD interacting with a general photonic reservoir.
In the weak-coupling regime, with the system-reservoir
coupling given by the dipole interaction in the rotating-
wave approximation, we apply the second-order Born and
Markov approximations to the interaction Hamiltonian, and
trace out the photon bath [20–22]. Thus, in the waveguide
and microcavity systems considered in this work, the
coupling rates are in the weak-coupling regime. Defining
σαβ ¼ jαihβj, α, β ¼ g, a, b, the ME is

_ρ ¼ i
X

n¼a;b

Δωn½σnn; ρ� þ i
X

n≠n0

n;n0
δn;n0 ½σngσgn0 ; ρ�

þ
X

n;n0
Γn:n0

�

σgn0ρσng −
1

2
fσngσgn0 ; ρg

�

−
i
ℏ
½Hp; ρ�

þ
X

n

γ0nL½σnn�; ð3Þ

where n ¼ a, b; n0 ¼ a, b for two excitons at the QD
position r0, Δωn ¼ ðωL − ω0

nÞ, ω0
n ¼ ωn − Δn, and Δn ¼

ð1=ℏϵ0Þd†
n · RefGðr0; r0;ωnÞg · dn is the photonic Lamb

shift; Hp ¼ P

n¼a;bðℏΩn=2Þðσgn þ σngÞ models a possible
external coherent drive applied to each dipole, with an
effective Rabi field Ωn ¼ hÊpump;nðrnÞ · dni=ℏ [23]; and γ0n
accounts for a pure dephasing process. Note that no secular
approximation is used in deriving (3), otherwise the AVI
effects disappear [24]. Note that our ME (3) also includes
coupling through the real part of the Green’s function, fully
accounting for photon exchange through both real and
virtual photons. The dipole-dipole coupling terms and
radiative decay rates are [25]

δn;n0 jn≠n0 ¼
1

ℏϵ0
Re½d†

n ·Gðr0; r0;ω0
n0 Þ · dn0 �; ð4Þ

Γn;n0 ¼
2

ℏϵ0
Im½d†

n ·Gðr0; r0;ω0
n0 Þ · dn0 �: ð5Þ

FIG. 1. Example QD states, (a) left-right circularly polarized or
(b) X − Y linearly polarized, using neutral exciton states that can
be coupled engineered field modes in a nanophotonic system.
The dipoles are polarized in the plane, caused by stronger
quantum confinement in the vertical direction, and the neutral
dot excitons may also be split by a small fine structure splitting
(FSS). (c) Selection of microcavity and waveguide systems where
the field polarization can be controlled, also showing an example
of external pumping (center).
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The familiar SE rate from a single dipole in a generalized
medium, Γa ¼ Γa;a, shows that the single dipole emission
is proportional to the da-projected LDOS as expected. To
characterize the strength of the dipole-medium coupling,
we introduce the enhanced SE factor (or generalized
Purcell factor) through FP ¼ Γa=Γ0

a, where Γ0
a is the rate

for a homogeneous medium. In addition, there is a possible
dipole-dipole coupling term given by Γa;b, and since da and
db are orthogonal for realistic QDs, this term vanishes if G
is isotropic. However, as we show below, AVI effects are
possible at certain locations, depending upon the nature of
the dipoles and the field modes.
(A) Consider the case of coupled right- and left-

circularly polarized dipoles, da ¼ ð1= ffiffiffi

2
p Þðdx þ idyÞ ¼

dR and db ¼ ð1= ffiffiffi

2
p Þðdx − idyÞ ¼ dL, coupled to a linearly

polarized field mode,Ek ¼ αexk þ βeyk, where α
2 þ β2 ¼ 1.

(i) If α ¼ 1, then Γa;b ¼ Γa;a ¼ Γb;a. (ii) If β ¼ 1, then
Γa;b ¼ −Γa;a ¼ Γb;a. (iii) If α ¼ β ¼ 1=

ffiffiffi

2
p

, then
δa;b ¼ Γa;a=2 ¼ δb;a. Remarkably, all three scenarios can
be realized in both cavity and waveguide systems; indeed,
the first two cases can be exploited to completely eliminate
radiative decay, while the latter case is caused by a dipole-
dipole induced Lamb shift. (B) Next, consider linearly
polarized dipoles, da ¼ dx and db ¼ dy, coupled to an
arbitrarily polarized field mode, Ek ¼ αexk þ βeyke

iϕ; here
we find that dipole-dipole coupling is optimized when
α¼β¼1=

ffiffiffi

2
p

, with ϕ¼0, again yielding Γa;b¼Γa;a¼Γb;a;
in this case, clearly one does not necessarily have to invoke
the language of an AVI-induced interference, since in this
basis the Green function is isotropic.
Note that aC point is rather special; here there is no dipole-

dipole coupling for orthogonal dipoles at the same location;
however, generalizing to the case of two spatially separated
dipoles in a waveguide, then one finds a rich variety of
dipole-dipole coupling, e.g., for right circularly polarized
dipoles at two C points, Γa;b ¼ 2Γa;a cos½kωðxa − xbÞ�;
Γb;a ¼ 0, [17], and for linearly polarized dipoles at two C
points, then δa;b ¼ Γa;a sin½kωðxa − xbÞ�=2 ¼ δb;a.
Free-field evolution: Modified vacuum dynamics.—

Consider exciton a excited, with exciton b in the ground
state. For the QD dipoles, we assume equal resonance
energies at ω0=2π ¼ 200 THz with dipole strength
d ¼ 50 D, with da ¼ dR and db ¼ dL. For simplicity we
neglect pure dephasing associated with charge noise, and
recent experiments [26] have shown that such rates can be
in the KHz range. For the cavity system, we use numbers
typical for microcavity systems [as in Fig. 1(c)] [19], and
allow Q to vary, with εb ¼ 13 and Veff ¼ 5 × 10−20 m3,
and for the PC waveguide, we use Veff ¼ 4 × 10−20 m3,
ng ¼ c=vg ¼ 50 (group index), a ¼ 400 nm, and ωc ¼ ω0.
After solving the ME [Eq. (3)], the populations are obtained
from na=bðtÞ ¼ hσaa=bbðtÞi.
Figure 2(a) shows the population dynamics with and

without AVI when α ¼ β ¼ 1=
ffiffiffi

2
p

[case A(iii)]. We

introduce here a new mechanism that to the best of our
knowledge is unknown: a Lamb-shift mediated dipole-
dipole interaction between orthogonally polarized excitons,
and the amount of population transfer is significant.While a
decays faster, exciton b becomes optically excited and also
decays radiatively. Next, we consider case A(i) [or case
(B) with linearly polarized dipoles]. The panels (b)–(d),
show, respectively, the decay from the excited statewhen dot
a is excited, and when we start the system in the antisym-
metric and symmetric Bell states: ψ� ¼ 1=

ffiffiffi

2
p ½jaijgi�

jbijgi�. In (b), the system evolves into a linear combination
of ψ�, and in (c) we see perfect superradiance (double the
single exciton decay rate); while in (d), we completely
suppress the radiative decay and evolve into a pure state,
with no long lived decay, i.e., an optically dark state. With
regards to the corresponding enhanced SE rates, the Purcell
factor in the waveguide, FP ≈ 32; and for the Q ¼ 1000
cavity, FP ≈ 109—which are quite modest. Henceforth, we
consider a QD at the X point, i.e., case A(i).
CW-pumped entanglement dynamics and population

trapping.—Next we look at the situation where one of
the QD excitons is coherently pumped, e.g., with an
external laser source, and the initial field is in vacuum
with the QD in the ground state. Normally this would be
very difficult to do with spatially coupled dots in the near
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FIG. 2. (a)–(b) Free field evolution of a QD two-dipole system
with an initially excited QD population inside a slow light
waveguide (WG), where (a) is at the 1=

ffiffiffi

2
p ðX þ YÞ] point and

(b) is at the X point. Exciton a (blue thick line) is initially excited
and the AVI causes QD b (red thin line) to be excited. The
population decay without the AVI (≡n0a) is shown in the black
dashed line. In case (b), the system forms a pure state consisting
of a linear combination of Bell states ψ− and ψþ. (c) Free field
evolution with the system in the symmetric state, ψþ, showing
superradiance. (d) Evolution with an antisymmetric state, ψ−,
which stays in a pure excited state in the long time limit.
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field, but since the dipoles here are orthogonal one can
selectively excite only one dipole (or both) with the
appropriate pump field polarization. In Fig. 3(a), we
consider the case where only exciton a is pumped in a
waveguide, which shows good population coupling and a
fidelity to project onto the state ψ−, defined as F−. In 3(b),
the waveguide system is now excited antisymmetrically,
where Ωa ¼ −Ωb, and this turns out to be the most striking
case: we observe the formation of infinite coherent Rabi
oscillations, and a complete suppression of the radiative
decay; in this regime, we have created a population trapping
state which has been studied extensively for multilevel atom
systems [24,27,28]. Next, we display the Q ¼ 3000 cavity
case in Figs. 3(c)–3(d), and find similar trends, but now even
Fig. 3(c) shows a significant reduction of the radiative decay
with only a excited; notably in this case, the single exciton
case hardly shows any oscillation at all (it is clearly in the
weak field regime). Here we predict a way to explore high
field optical physics, even though the Rabi field is much
smaller than the intrinsic radiative decay rate of a single
exciton. Note that for a Y point [case A(ii)], the trapping
solution is simply Ωa ¼ Ωb, which yields an identical
trapping state.
To better explain the creation of a population

trapping state, we can change the state basis to
jϕ�i ¼ 1=

ffiffiffi

2
p ðjai � jbiÞ, and rewrite our ME to show that

only interactions between jϕ−i and jgi are possible. Thus if
we initially start the system in state jgi, jϕþi does not get
populated at all; defining Ωa ¼ Ω ¼ −Ωb, then the ME
reduces to _ρ ¼ −iΩ= ffiffiffi

2
p ½jϕ−i hgj þ jgi hϕ−j; ρ� and clearly

mimics the coherent optical Bloch equations for a
2-level atom.
CW-pumped Mollow triplets, nonuplets, and singlets.—

One of the most striking experimental signatures of high-
field cw driven two-level systems is the Mollow triplet
[29], which stems from transitions between the field-
driven dressed states. Recently, the Mollow triplet has been
observed in a number of QD cavity systems [30–32]. Using
Eq. (3) and the quantum regression theorem [23], the in-
coherent spectrum emitted from each QD exciton, n, is ob-
tained from Sn0ðωÞ ¼ limt→∞Ref

R∞
0 dτ½hσngðtþ τÞσgnðtÞi−

hσngðtÞihσgnðtÞi�eiðωL−ωÞτg, where we assume the detector is
aligned with the corresponding polarization and we ignore
additional filtering effects associated with light propagation
from theQD to the detector (though these effects can easily be
included [33]). We also consider the case where the QD
excitons are directly pumped with an effective Rabi field,
otherwise theywill scalewithQ andng if pumped through the
cavity mode and PC waveguide mode, respectively.
Figures 4(a)–4(b) show the computed Mollow triplet for

the cavity case above, with one and two coherent fields,
which demonstrate how the Mollow peaks are spectrally
sharpened and clearly resolved, even though we are not in
the usual Mollow regime (i.e., Ω ≪ Γa, cf. the broad black
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FIG. 3. Examples of a coherently pumped QD two-dipole
system. (a) Waveguide: Exciton a (blue solid line) is pumped
with Ωa ¼ 0.01 meV cw driving field, and the AVI causes QD b
(orange dashed line) to be excited at X. The population decay
without the AVI is shown in the black dashed line. (b) Both
excitons are pumped with Ωa=b ¼ �0.01 meV (≈3.7Γa). For the
linearly polarized cavity in (c)–(d), we use Q ¼ 3000, and Ωa ¼
0.02 meV (≈0.06Γa). The green dashed curve shows the fidelity
of being in the state ψ−, for panels (b) and (d), which clearly
exhibits perfect Rabi oscillations with no radiative decay.
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FIG. 4. Incoherent spectra (Mollow triplets) from exciton a
(blue solid line) and exciton b (red dashed line); the result for only
1 QD exciton is shown in the (black) thin dashed line. All results
are at X for the linearly polarized cavity, and the vertical magenta
lines indicate the single exciton dressed-state resonances.
(a)Q ¼ 3000 cavitywithΩa ¼ 10 μeV. (b)Q ¼ 3000 cavitywith
Ωa=b ¼ �10 μeV. (c) Q ¼ 500 cavity with Ωa ¼ 180 μeV.
(d) Q ¼ 3000 cavity with Ωa ¼ 0.05 μeV, and γ0 ¼ 0.1 μeV.
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dashed spectrum from a single exciton.). Indeed, in the
latter case, we have added a pure dephasing rate of 0.1 μeV,
otherwise the peaks are infinitesimally sharp. The next two
panels show examples of some striking physics: 4(c) shows
how to observe more than three spectral peaks, as we are
now dealing with a dressed triplet of states, which yields 9
resonances, 5 of which are degenerate, so 5 resolvable
peaks can be seen in general; similar peaks have been
predicted for V-type 3-level atom when the dipole moments
are nearly parallel [28]; while finally, 4(d) demonstrates
how to excite a single subnatural resonance, which has
applications for producing single photon sources [15];
worth to note that the nominal radiative decay rate
Γa ∝ 0.3 meV, while the linewidth of the emitted spectrum
is 0.1 μeV.
Conclusions.—We have introduced several practical QD

systems that can yield substantial dipole-dipole coupling
between orthogonal dipoles within the same QD, through
carefully nanoengineering photonic AVI effects. We have
also shown how to exploit such physics for generating a
population trapping state and demonstrated the conse-
quences of these states for exploring high field optical
physics, such theMollow triplet regime,with relativelyweak
fields. Awide range of other quantum optical effects should
be accessible in this regime, including the possibility of
exploring cavity-QED effects with cavities that are nomi-
nally in the weak coupling regime. Indeed, we are also now
investigating the case of strong coupling in high quality
cavities. Our preliminary results showvery similar results on
trapping of population due to AVI both for initially excited
atomic system as well as for the asymmetric drive [34].
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