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We establish a correspondence between ultraviolet singularities of soft factors for multiparticle
production and rapidity singularities of soft factors for multiparton scattering. This correspondence is
a consequence of the conformal mapping between scattering geometries. The correspondence is valid to
all orders of perturbation theory and in this way, provides one with a proof of rapidity renormalization
procedure for multiparton scattering [including the transverse momentum dependent (TMD) factorization
as a special case]. As a by-product, we obtain an exact relation between the rapidity anomalous dimension
and the well-known soft anomalous dimension. The three-loop expressions for TMD and a general
multiparton scattering rapidity anomalous dimension are derived.
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Introduction.—Factorization theorems are an effective
tool for the description of hadron reactions within the
perturbative quantum chromodynamics (PQCD)[1-5].
Factorization formulas have a common structure, which
includes a hard part, parton distributions, jet functions, and
the soft factor(s). However, the operator structure of these
ingredients can differ drastically for different processes,
which leads to significant fragmentation of theoretical
results. In this Letter, we discuss a correspondence between
soft factors (SFs) typical for different kinematics and
consequences of this correspondence.

Generally, SFs represent the soft part of the between-parton
interaction. A typical SF is given by a vacuum matrix element
of a configuration of Wilson lines that reflects the classical
picture of scattering. Being in many aspects artificial, SFs
contain a set of infrared divergences and are defined only
within an appropriate regularization. Studying the structure of
divergences, one gets access to the scaling equations and
corresponding anomalous dimensions. In turn, it allows one
to resum large logarithms of factorization scales and obtain
scattering cross sections in a wide kinematic range.

Considering the processes where several partons partici-
pate in a single hard interaction, one often deals with SFs of
the form

Sted({o}) = 3wy (Lo (o)), (1)

where X denotes the complete set of states, and {v} =
vy,..., 0y are vectors pointing along the momenta of
scattering partons. The function II is given by
cd cid cnd,
M ({v)) = (XIT[@4 (0)... 95 (0)][0).  (2)

Un

where @, (x) is a half-infinite Wilson line rooted at x and
pointing in the direction v

®,(x) = Pexp [ig[)oo dov* Al (ve +x)T4|,  (3)
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with T4 being the generator of the gauge group. The
pictorial representation of Il is shown in Fig. 1(a). Here and
later, the bold font denotes the objects with matrix color
structure that, in Egs. (1) and (2), is represented by indices
a, ¢, d. The weight function wy strongly depends on the
type of the factorization theorem and the process under
consideration. SFs similar to (1) are very generic and arise
in various applications. The most popular examples are: the
description of multijet production and event shapes (see,
e.g., [4-6]), the hard-collinear factorization, and Sudakov
resummation for several partons (see, e.g., [2,3,7-11]), and
threshold resummation (see, e.g., [12—14]). In this Letter,
we discuss only configurations with lightlike vectors v
(v? = 0), which correspond to scattering of massless or
high-energetic partons.

A different configuration appears in the multiparton
scattering [15—-18]. In this case, partons scatter pairwise,
and SF reads

2l ({b}) = (OIT[(@_5@L) % (b))... (D@L, ) vy
x (by)]]0), (4)

FIG. 1. Geometry of Wilson lines within matrix elements IT{¢¢}
(a) and {4} (b). The color indices attached to the end of Wilson
lines are denoted by letters ¢ and d. The conformal transformation
(10) maps the infinite sphere S into the transverse plane 7" and the
origin to the lightlike infinity (black points).

© 2017 American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.118.062001
http://dx.doi.org/10.1103/PhysRevLett.118.062001
http://dx.doi.org/10.1103/PhysRevLett.118.062001
http://dx.doi.org/10.1103/PhysRevLett.118.062001

PRL 118, 062001 (2017)

PHYSICAL REVIEW LETTERS

week ending
10 FEBRUARY 2017

where n and 7n denote a pair of lightlike vectors
n*> =n?> =0, and b are vectors in the transverse plane
(nb;) = (ab;) = 0. The configuration (4) is typical for
Drell-Yan-like processes, where all partons belong to initial
hadrons. Such processes represent a part of background
interactions at high energies. All intervals within the
operator (4) are space- or lightlike. It allows one to rewrite

Y in the form similar to (1)
({r}) = ZWx~nx {b}E.x({b}). (5)

where wy is a unity weight and

(X|T[® (by)... 5 (

Ea ({b}) = by)llo). (6)
The pictorial representation of E is shown in Fig. 1(b). SFs
2 are not studied in such details as SFs S, mostly because
the subject is relatively new.

The SFs & and X, as written in (1) and (4), are color
multimatrices. Generally, constituent Wilson lines @ are of
different color representations. Under the gauge rotation, the
sets of indices {a} or {d} are transformed by gauge trans-
formation matrices at the same points [19]. Therefore, the
singlet elements of SFs are gauge invariant. Naturally, only
such combinations contribute into the factorization formulas.

At N=2, SFs & and X are given by the same
configuration of Wilson lines. It appears within the trans-
verse momentum dependent (TMD) factorization theorem,
which describes, e.g., unintegrated Drell-Yan process
[9,21]. In our notation, this important case reads

S(b) = TrS(n, i) =

TrZ(b,0 7
N - (£,0),  (7)
where N, is the dimension of Wilson lines representation.
Here, for S, we take the weight wy = e’P b with P being
the shift operator, and use the Lorentz boost to the frame
where {v;,v,} = {n,7}. TMD SF has been studied in
detail in various regularizations, see e.g., recent two-loop
evaluations [22-24].

Generally, SFs have ultraviolet (UV) and infrared (IR)
divergences (in some cases, the latter are regularized by the
weight function wy). While UV divergences are removed
by the renormalization procedure, the IR divergences are
an inherent part of SFs. For some configurations, the IR
divergences related to different partons can be separated. In
these cases, universal process-independent parton substruc-
tures can be defined. In particular, the separation of rapidity
divergences for the TMD SF [21,25] results in well-defined
TMD parton distributions [21,26,27]. The similar statement
for the double-parton scattering (X at N = 4) has been
recently observed at two-loop order [18]. In this Letter, we
prove that rapidity divergences can be removed by the
renormalization procedure for every E. It is equivalent

to the statement that rapidity divergences for SFs X are
factorizable.

Correspondence between 2 and T1.—Individually, IT and
E are not well defined. First, they are not gauge invariant, even
if color indices form singlets. Indeed, under the gauge
transformation, indices {c} of TT{“?} couple to gauge matrices
at different points of an infinite lightlike sphere, and indices
{c} of 2{¢?} couple to gauge matrices at different points in the
transverse plane. Second, II and E have a different set of
divergences than SFs. The divergences that appear due to the
interaction between parts of SFs are not present. Instead, a
different set of divergences appears. One example is the UV
divergences of X that arise due to the gluon exchanges
between ®, and ®_; in the vicinity of their contact point.
These divergences are absent in the matrix element I, which
however has end-point divergences due to nonanalytical
behavior at the end of a single ®!,. Another example is
mass divergences. Mass divergences cancel in the sum of all
diagrams for a SF, but remain uncanceled within matrix
elements ITand Z. In total, IT and = are strongly dependent on
the gauge fixation condition and the regularization scheme. In
the following, we assume that IT and = are considered within
appropriate gauge and successful IR regularization, which we
call a calculation scheme for brevity.

Despite the strong general dependence on the calculation
scheme, the matrix elements II and E have substructures
that are insensitive to it. These are UV divergences for Il
and rapidity divergences for E. The UV divergences of Il
are removed by a renormalization matrix [28,29]

Igee({v}) = Mx({v})Z({v}). (8)

The matrix Z is independent of X and of the calculation
scheme. Therefore, the renormalization scale dependence is
also calculation scheme independent

s NI MO VAT

where y,({v}) is the soft anomalous dimension (SAD). The
SAD is an essential part of factorization, and nowadays, is
known up to three-loop order [30].

The matrix element Ily_, can be transformed to the
matrix element Zy_, by the conformal-stereographic
projection [31]

2
1 X7

C:{x*,x‘,xT}ﬁ{—zx—Jr,x_ 2x—+’\/_+} (10)

where we use a common notation for the components of
a vector v = (nv), v~ = (v), and (nvy) = (Avy) = 0.
Applying this transformation to the ®%(0), we obtain

%) (11)

Therefore, under the transformation C, the matrix element
II transforms as (see also Fig. 1)

CP4(0) = @i;d(
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My ({v}) = Ex—o({b}). (12)

with {b} = {vy/v/2v}. In the following, we discuss the
consequences of (12) for the structure of divergences.
Transforming II to E by the conformal transformation C,
one also changes the classification of divergences. So, it
can be traced that the UV divergences of II are mapped into
the rapidity divergences of E. Therefore, in a conformal
field theory, the UV finite expression (8) turns into the
rapidity-divergence-free expression for =

Enx({6}) = E.x({bH)R({b}), (13)

where the matrix R is obtained from the matrix Z by
some transformation of regularizations. The renormaliza-
tion of rapidity divergences introduces the scale parameter
. The dependence on it is given by the rapidity anomalous
dimension (RAD)

d_ -
Cd_é,:‘n,X({b}) =28, x({p})D({h}), (14)

where the factor 2 is put to match the definition of TMD
RAD. This relation shows that rapidity divergences of E
are independent of X (which also follows from the general
consideration [32]), and RAD is independent of the
calculation scheme (which is known in the TMD case
[23,24,27,33]). The renormalization of rapidity divergences
in the form (13) was used for the case of TMD SF in many
papers (see, e.g., [25,27]). In the following, we argue that
(13) is also valid for PQCD, where conformal symmetry is
violated by quantum corrections.

The matrices Z and R are the same matrices if calculated
in some proper regularizations. Therefore, within conformal
field theory we have the relation

r:({v}) = 2D({b}). (15)

This relation for TMD kinematics has been recently con-
firmed for N' = 4 SYM theory at three-loop order in [34].

Note that the transformation (10) is also used to relate
the Balitsky-Kovchegov (BK) equation with Banfi-
Marchesini-Smye (BMS) equations [35,36]. In this case,
the UV singularity is mapped onto a collinear one and
results in the same nonlinear evolution equation.

Relation between RAD and SAD in POQCD.—In QCD,
the conformal invariance and hence, the relation (15), are
violated by quantum corrections. Nonetheless, the violating
terms can be found by studying Eq. (15) at critical coupling
where the conformal invariance of QCD is restored [37].
The value of critical coupling a is defined by the zero of
QCD p function. In the dimension regularization (with
D =4 —2¢) and MS scheme, the f function is

B(g) = g(—e — apo — aipy — ), (16)

where g is QCD coupling constant, a, = ¢*/(4r)?, and the
coefficients 3, are well known. The equation f(g*) =0
defines the value of a;(¢). Equivalently, one can find the
number of space-time dimension €* at which QCD turns to
the critical regime, €* = —a,f, — a2p; — - - -.

The essential statement of the approach is that in MS-like
schemes, UV anomalous dimensions are independent of
the choice of ¢ [38-40]. In other words, SAD has full
conformal symmetry and is the same for the physical QCD
and the QCD at critical coupling. The RAD does depend
on €. At critical coupling, the conformal invariance of QCD
is restored and the relation (15) holds. Therefore, in QCD
we have

rs({v}) = 2D({b}. €"). (17)

This relation presents our main result. It connects at all
orders of perturbation theory, the SAD with the RAD,
evaluated in the particular (critical) number of dimensions.

Let us test the relation (17) in the simplest case at N = 2.
In this case, the matrix structure is reduced to a single
entry (7). The SAD has the form [7,41,42]

2
V1o -
ys(”l’ UZ) = Fcusp(as) In (%) - }/S(as)a (18)

where I’y is the lightlike cusp-anomalous dimension,
v;j = (v; —v;)%, and v is some overall IR scale. The
coefficients of perturbative expansions ¢, = 4Cra, +
I'a? +--- and 7,(a,) =0 x a; + 7,,a% + - - - are known
up to order a’ [43,44] (here, Cy is the quadratic Casimir
eigenvalue for the representation f, dictated by the repre-
sentation of Wilson lines). At N = 2, the RAD is reduced to

TMD RAD [21-23,25-27]
trD (b, by) = N, D(L, ay), (19)

where L = 1n(ﬂ2b12€2YE/4), with b” = (bl - b/)Z The
dependence of RAD on the renormalization scale is
given by

Fcusp (as)

el )

d
ﬂzd—HzD(L,as(ﬂ)) =

which fixes the logarithmic part of D in terms of I, and
function (see, e.g., collection of formulas in [27]).

Applying the perturbative expansion to Eq. (17), one can
obtain higher order terms of D from the lower order terms
and y,. To obtain a3 term, one needs to consider RAD at a2
order at arbitrary e. It can be found from the calculation
made in [22]
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D(L.a,.€)=—2a,Cy {Bef(— )+ 1] +2Ca3 {BZEFQ( €)
. {q(zm—ze] 2ylee] el 17e)

+(1—2le)_(3€—2e) (3[42_636] CA_Nf)]

v RECINCT

+B

where B = el, and N ¢ is number of fermions. Under the
conformal transformatlon (10), the variable v;; turns to b;;
with unknown prefactor, which cannot be flxed due t0
lightlike origin of vectors v. This prefactor can be absorbed
into the variable v, which we find by matching the leading
order expressions v = 2e¢77£. Considering the perturbative
expansion at critical ¢*, we obtain

Fcusp(as)L —7s (as) = 2D(L’ as) + 25D(L’ as)7 (22)

where

2 2
OD(L,a)) = ~@Cif(L + ) + aiC {‘?“

r
(ﬁO : +ﬁ1>L2 + Bo(71s — 2PoC2) L

2
B0\ 2=+ 24 <c3 - Q)
- 266,C, (c4 . %ﬂ o). (@)

Comparing the perturbative orders of Eq. (22), we express
TMD RAD in terms of SAD (or vice versa) up to order a;.
The finite part of D is

D(0,a,) = a? ( &+ Cfﬂ0€2>

+ad(-2_x)+0(ad),
(F5-x) v

where X is given by the last two lines of (23). This
expression coincides with the result of the direct calculation
[34]. The logarithmic part of D is dictated by Eq. (20) and
exactly reproduced in (22). This example gives a nontrivial
confirmation of correspondence presented in this Letter.

Using (17), we can also derive the RAD for general
multiparton scattering configuration at a’ order. Its color
structure has the form

N
> TITID(Ly;.a,)

1<i<j

D({b}) =

+ fABafaCD [ZT?T?TETID‘%'(Z?,, bj, bk, bl)
i,.j.k,l

N N
+ 3 D {TATPYTETCC(b;. b;. by
i=1 1<j<k
i£j.k

) 4+,

(24)

where indices i, j, k, [ enumerate Wilson lines in Z, the
summation indices in the second line are all different, fA2¢
is the gauge-group structure constant, and dots denote the
color structures that appear at higher perturbative orders.
The functions F and C are of order a;. We have obtained
the expression (24) by resolving the color algebra of X in
terms of the generating function for web diagrams [45,46].
Note the absence of color structures like fA#“TTHTE
or d*PCT}TPTE, which in principle, could appear at "this
order. In the hmlt N = 2, all the color structures except the
leading one are zero; therefore, the first line represents
TMD RAD (in SAD terminology, it is called the dipole
contribution). Equation (24) agrees with the explicit two-
loop calculation of D [18].

The nondipole contribution to SAD evaluated at a} order
in [30] has the same color structure as found by us for RAD
(24), which grants an additional check for relation (17).
Because of the fact that functions F and C are of a’ order,
they are not affected by conformal symmetry, violating
corrections at this order. Therefore, comparing with [30],
we obtain

f(bzv bj’blwbl) = ag]:(pikjl?piljk) + O(“?)v (25)
é(bi’b by) = a3 (=(83 = ¢5/2) + O(al),  (26)

where p; i = b;jby/bybj is the conformal ratio. The
explicit form of function F can be found in [30].
Conclusion & discussion.—We have shown that UV
divergence of the “multicusp” configuration of lightlike
Wilson lines is related by the conformal transformation to
the rapidity divergence of a set of parallel lightlike half-
infinite Wilson lines. This correspondence is exact in any
conformal field theory and violated by f-function correc-
tions in QCD. The main consequence of the correspon-
dence is that rapidity divergences can be removed from a
(matrix) SF (4) by a singular (matrix) factor, analogous to
UV renormalization factor. This statement holds at arbitrary
perturbative order in conformal field theory and QCD (at
least in MS-like schemes) because the fS-function correc-
tions modify only numerical values of factors, but not the
color or divergence structure. Therefore, we have proven
the renormalization of rapidity divergences for configura-
tions of Wilson lines of type (4). The proof of rapidity
renormalization procedure supplements many factorization
theorems and allows rigorous definition of corresponding
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parton distribution, such as TMD parton distribution and
double-parton distributions. In the particular case of TMD
kinematics, the rapidity renormalization is known and has
been discussed in many papers, e.g., [21-27]. For the case
of double-parton scattering, it has been demonstrated at
two-loop order in [18].

The equivalence of rapidity and UV renormalization
factors leads to the equality of rapidity and soft anomalous
dimensions in a conformal field theory, which was also
observed in direct calculations [34]. In QCD, the terms
violating this equality can be found by considering QCD at
the critical coupling. We have derived the violating terms
for TMD kinematics up to a3 order and confirmed the result
for the recent three-loop evaluation of RAD made in [34].
Also, we have obtained the general matrix-valued RAD for
a multiparton scattering at order a3. The obtained expres-
sions at order a2 coincide with results presented in [18].
The color structure of the general matrix-valued RAD
repeats those of SAD, which we have checked explicitly
within the generating function approach [45,46]. The
leading color-quadrupole contribution is obtained from
the corresponding terms of SAD [30], and is a new result.

The presented study makes a bridge between seemingly
very different kinematic regimes, namely the multiparticle
production and the multiparton scattering. The exact
relation between SAD and RAD is an immediate result,
and probably much more would come with a deeper study.

The author is grateful to V. Braun, A. Manashov, and
I. Scimemi for multiple discussions, and also to D. Neill for
the introduction into BK-to-BMS relation, which initiated
this research.
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