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We experimentally study tunneling of Bose-condensed 87Rb atoms prepared in a quasibound state and
observe a nonexponential decay caused by interatomic interactions. A combination of a magnetic
quadrupole trap and a thin 1.3 μm barrier created using a blue-detuned sheet of light is used to tailor traps
with controllable depth and tunneling rate. The escape dynamics strongly depend on the mean-field energy,
which gives rise to three distinct regimes—classical spilling over the barrier, quantum tunneling, and decay
dominated by background losses. We show that the tunneling rate depends exponentially on the chemical
potential. Our results show good agreement with numerical solutions of the 3D Gross-Pitaevskii equation.
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The escape of a particle due to tunneling from a quasi-
bound state is one of the earliest problems studied in
quantum mechanics. When applied to understand α decay
of nuclei, it successfully explained not only the random
nature of the decay, but also the large range of nuclear
lifetimes, spanning many orders of magnitude [1]. Since
then, quasibound states and quantum tunneling have been
shown to play key roles in physical chemistry [2], biology
[3], and condensed matter physics [4]. Consequently, tun-
neling has been studied in numerous systems, but mainly in
those where the decay is irreversible and particles decay
independently of one another, leading to the usual exponen-
tial dependence of the survival probability with time. In
contrast to all these contexts, in this Letter we report
nonexponential decay of a Bose-Einstein condensate
(BEC) from a quasibound state, arising due to interatomic
interactions.
To obtain quasibound states of BECs, we developed a

novel trapping geometry in which a thin repulsive optical
barrier forms one of the walls of the trap, as depicted in
Fig. 1. The ground state properties of the condensate in
this trap show excellent agreement with mean-field theory.
The strong exponential dependence of the tunneling rate on
interactions is demonstrated by simultaneously measuring
the number of atoms left in the trap and inferring the
chemical potential from time-of-flight measurements of the
condensate.
Techniques for preparing and manipulating ultracold

atoms have matured in the past two decades, leading to
a number of fundamental experiments on quantum tunnel-
ing. Experiments studying tunneling in bound systems have
explored Josephson oscillations and self trapping [5], the dc
and ac Josephson effect [6], and the crossover from
hydrodynamic and Josephson regimes [7]. In optical lattice

systems, the interplay between interwell tunneling and
strong interactions is seen to give rise to the superfluid to
Mott insulator transition [8,9]. Meanwhile, experiments
studying tunneling from a bound state into the continuum
are fewer, and largely study Landau-Zener tunneling out of
an optical lattice. Early work on Landau-Zener tunneling of
a BEC demonstrated interwell coherence in the tunneling
process by observing pulse trains emitted at the Bloch
frequency [10]. Since then, the role of interatomic inter-
actions has been investigated in Landau-Zener tunneling
[11,12]. Deviations from an exponential decay have been
demonstrated in Landau-Zener tunneling outside the BEC
context, arising due to reversible system-environment
coupling at early times [13], or due to Zeno and anti-
Zeno effects [14]. However, in our work it is the non-
linearities due to interactions and the macroscopic nature of
BECs that create a highly nonexponential decay. Such
nonlinearities have previously been shown to lead to sub-
Poissonian number statistics during the decay process [15].
While experiments have focused on tunneling between

bound states, there has been much theoretical activity
studying trapped ultracold gases tunneling into the con-
tinuumvia a thin barrier. The effect ofmean-field interactions
on the tunneling rate has been calculated for both attractive
and repulsive interactions, predicting a nonexponential
decay curve [16]. Numerical simulations of dynamics of a
trapped condensate tunneling out through a barrier reveal
formations of shock waves inside the condensate, and blips
emerging on the escaped side, as well as the formation of
solitons [17,18]. Studies of beyond-mean-field effects con-
sider tunneling of a strongly interacting Tonks-Girardeau gas
[19] and the development of correlations and fragmentation
during the tunneling process [20–23]. Ourwork opens up the
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hitherto unexplored experimental regime of tunneling from a
single trapping well into the continuum.
A central feature of our work is a novel repulsive sheet trap

(REST), formed using a combination of a quadrupole
magnetic field and a blue detuned light sheet, as depicted
in Fig. 1. The magnetic trap provides harmonic confinement
in the horizontal directions with trapping frequencies ωx ¼
2π × 86 Hz andωz ¼ 2π × 43 Hz. Additionally, it provides
a 28.3 G=cm vertical magnetic field gradient, which com-
bined with gravity results in a net upward acceleration of
geff ¼ 8.4 m=s2. A thin light sheet serves as the tunnel barrier
and is formed by focusing a 405 nm laser beam using a high
numerical aperture (NA) objective (design based on
Ref. [24]). The beam is nearly Gaussian with a waist w0 ¼
1.3ð1Þ μm in the y direction and a Rayleigh range
zR ¼ 8 μm, determined by knife-edge scans. An acousto-
optic deflector is used to scan the beam in the x direction to
create a flat potential within a 100 μm region [25].
Our experiment begins with a cloud of 87Rb atoms in the

jF ¼ 2; mF ¼ 2i ground state evaporatively cooled close to
degeneracy in a hybrid trap [26]. The magnetic field
gradient is set to cancel gravity in the hybrid trap. The
cloud is then adiabatically transferred to the REST trap by
ramping up the barrier height U0 and the magnetic field
gradient, while ramping down the power in the hybrid trap

beam. Because of the small trapping volume of the REST
trap, the phase space density increases during the transfer
due to the dimple effect [27–29]. Further evaporation is
achieved by lowering the barrier height to ∼550 nK to get a
pure BEC with 150,000 atoms. A rf knife is used transfer
the escaped atoms to an untrapped mF state and eject them
out of the magnetic trap.
To initiate the tunneling dynamics, the barrier height is

then nonadiabatically ramped down in 5 ms. The condensate
is held in the trap for a variable time from 0.1 ms to 1.2 s.
The trapping potentials are then abruptly turned off and
the cloud is imaged after a 20 ms time-of-flight expansion.
We imageon theF ¼ 2 → F ¼ 3 cycling transitionusingσþ
light propagating along z and correct for probe saturation
effects [30,31] to ensure accurate atom number calibration.
The atom number calibration is verified by measuring the
critical temperature in the hybrid trap, which agrees within
2% with the theoretically predicted value.
The expansion of the condensate during time of flight is

highly anisotropic, as seen in the inset of Fig. 2. The tight
confinement in the y direction causes the condensate to
rapidly expand in the y direction, converting its interaction
energy to kinetic energy [32,33]. We extract the chemical
potential from the final y width by fitting the 2D column
density to an inverted paraboloid integrated along the
imaging axis. This distribution, while strictly valid only
for harmonic traps, fits our data well. Given our unusual
trap geometry, there is no analytical expression for the
chemical potential in the Thomas-Fermi limit. However,
we can approximate the Gaussian barrier with a
linear potential [see Fig. 1(c)] with an acceleration

(a)

(c)

(b)

FIG. 1. Trap geometry for studying tunneling out of a quasi-
bound state. (a) A blue-detuned light sheet propagating along the
z direction forms one of the walls of the trap. Anti-Helmholtz
coils provide a vertical field gradient B0

y which overcompensates
gravity, resulting in a net acceleration geff along the þy and
harmonic confinement in the x and z directions. The atoms are
trapped in a small pocket created by the light sheet and the field
gradient and tunnel towardsþy through two weak links indicated
in green. (b) Surface plot of the potential energy U at x ¼ 0. The
tight focus of the barrier beam causes it to diffract out, increasing
the barrier width off center and decreasing the barrier height. The
initial escape path through the two saddle points is indicated with
green arrows. (c) A slice of the potential energy at x ¼ z ¼ 0
shown in solid black. A linear approximation, used to estimate the
chemical potential, is indicated by the dotted lines.

FIG. 2. The chemical potential μ of the condensate as a function
of the number of atoms N for barrier heights of 330(35) nK (red
circles), 290(30) nK (blue diamonds) and 240(25) nK (green
squares). Black solid line is an estimate using Eq. (1) and the
dotted line is a numerical solution of the 3D Gross-Pitaevskii
equation for a barrier height of 300 nK. The inset shows a collage
of absorption images with progressively decreasing atom number
from left to right. A trail of atoms escaping along the y direction is
seen when the atom number is high. OD is the on-resonance
optical density of the cloud after correcting for probe saturation
effects.
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ab ¼ 2U0=mw0

ffiffiffi

e
p

− geff to get an analytical approxima-
tion for the chemical potential

μ ¼ f12ðℏωÞ2ðmaÞðNasÞg1=3: ð1Þ
Here, ω ¼ ffiffiffiffiffiffiffiffiffiffiffi

ωxωz
p

, N is the number of atoms, as is the
s-wave scattering length, m is the mass of the particle, and
a ¼ geffab=ðgeff þ abÞ is the reduced acceleration.
Figure 2 shows the chemical potential of the condensate

for three different barrier heights. The barrier height U0 is
calculated by measuring the power in the barrier beam and
calculating the ac Stark shift [34]. The reported uncertainty
is due to systematic errors in estimating the transmitted
fraction of the barrier beam through all the optics and due to
uncertainty in the measured barrier waist. The chemical
potential data agree well with the approximation in Eq. (1),
evaluated using measured trap parameters. However, due to
the tight confinement in the y direction, we are in a regime
where μ is comparable to the single particle ground state
energy ϵ0 ¼ ðℏma2=2Þ1=3 ∼ 20 nK. Thus, kinetic energy
corrections to the Thomas-Fermi approximation are impor-
tant [35,36]. Indeed, the agreement with data is better when
the chemical potential is calculated by numerically solving
the full 3D Gross-Pitaevskii equation (GPE) equation, as
seen in Fig. 2.
To characterize loss processes other than escape through

the barrier, we study the decay from a trap with a high barrier
height of 700 nK. At this barrier height, escape due to
classical spilling and tunneling is negligible. We find that in
the 1.5 s observation time, the decay is exponential with a
decay rate of Γbg ¼ 0.31ð0.02Þ s−1, which we take as our
background decay rate. This rate is consistent with the three-
body recombination rate, given by Γ3b ¼ Lhn2i, where L in
the three-body decay constant, n is the condensate density,
and h:i denotes a spatial average over the extent of the cloud.
For the REST trap in the Thomas-Fermi limit, we can show
that hn2i ¼ 3n20=10 ¼ ð3=10Þðμ=gÞ2, where n0 is the peak
density. Using the value for L from Ref. [37] and the
measured chemical potential μ ¼ 92 nK, we find that
Γ3b ¼ 0.34ð0.09Þ s−1. We do not find any discernible
thermal component emerge during the hold. Thus, we can
ignore losses due to heating and thermal activation.
Next, we discuss the escape dynamics of the condensate

when the barrier height is lowered. Figure 3 shows the
number of atoms remaining in the trap with time on a
semilog plot. An exponential decay process, characterized
by a constant decay rate, would appear as a straight line on
a semilog plot, whereas here we see a dramatic decrease in
the decay rate with time. The decay rate Γ ¼ d lnN=dt,
calculated by fitting sets of 5 consecutive points to a
parabola and evaluating the slope at the center, is shown in
Fig. 4(a).
We identify three distinct regimes in the decay process:

(a) classical spilling over the barrier in the first 10–20 ms,
(b) quantum tunneling from 20 ms to 0.5 s, and (c) decay
dominated by background losses from 500 ms onward. The
initial nonadiabatic lowering of the barrier height causes the

condensate to rapidly expand and spill over the two saddle
points of the trap, as shown in Fig 1(b). The 5 ms initial
ramp-down time of the barrier height is chosen to be
comparable to 1=ωz ¼ 3.7 ms, so that it is slow enough not
to cause sloshing in the trap after the ramp down, but fast
enough that tunneling does not begin as the barrier is being
ramped down. We expect the spill to occur on a similar time
scale, and indeed we see that in the first 10–20 ms, μ drops
to below the trap depth Us, at which point the decay
transitions from classical spill to quantum tunneling.
The trap depth Us, which is the difference in potential

energy at the saddle point and the bottom of the trap, is
calculated from the peak barrier height U0 and measured
trap parameters. In Fig. 4(a), the points where the chemical
potential is greater than Us are shown in gray. Close to the
transition point where μ ∼Us, the Γ vs μ data show a kink
and the decay rate starts dropping exponentially after the
transition. This provides confirmation that the decay
mechanism has switched from classical spilling to tunnel-
ing. The tunneling regime is characterized by an exponen-
tial dependence of the decay rate on the chemical potential.
There is a small range of μ of about 20 nK for which the
tunneling range is appreciable. In this range the decay rate Γ
drops dramatically until it reaches the backgrounddecay rate.
The experimental results are compared against full 3D

GPE simulations, with measured trap parameters and initial
atom numbers used in the simulations [38]. From Fig. 3 and
Fig. 4, we see that our data agree well with the simulations.
Oscillations in the chemical potential curves in Fig. 4 are
due to breathing mode oscillations surviving after the initial
spill out. The small disagreement of our data with simu-
lations could be attributed to a systematic error in estimat-
ing the barrier height and the slight non-Gaussian nature of
the barrier beam due to residual spherical aberrations in the

FIG. 3. Number of atoms N left in the trap after a hold time t for
barrier heights of 330(35) (red circles), 290(30) (blue diamonds),
and 240(25) nK (green squares). Solid gray lines are results of 3D
GPE simulations for a barrier height of 230, 240, 290, 300, 340,
and 350 nK from bottom to top. Only the first 0.6 s are shown
here since the decay rate approaches the background decay rate at
later times.

PRL 118, 060402 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

10 FEBRUARY 2017

060402-3



focused beam. Figure 4(b) compares the slope β of the
logðΓÞ − μ curves against results of 3D GPE simulations
[38]. A WKB-style argument suggests an exponential
dependence on μ, where the steepness depends primarily
on the barrier thickness. Here we see that the GPE
simulations give exponential behavior, with slopes between
0.15 and 0.2 nK−1, consistent with our data.
In conclusion, using a novel trapping configuration, we

have demonstrated for the first time quantum tunneling of a
condensate from a single trapping well into the continuum,
and shown the exponential dependence of the tunneling
rate on the chemical potential. Having shown good agree-
ment with mean-field simulations, our trapping geometry
may be extended to observe tunneling of many-body states.
For low atom numbers of around 100–1000, μ would be
comparable to ϵ0, which freezes out all the dynamics in the
vertical (y) direction, making the condensate two dimen-
sional. By further confining the atoms by scanning the
barrier beam in both the x and y directions in a U-shaped

pattern, even one-dimensional condensates could be cre-
ated. Tunneling dynamics of 1D or 2D condensates, where
phase fluctuations and defects have been seen, would be an
intriguing future direction of research [22,23,42,43].
Tunneling out of the REST trap occurs through two
symmetric points, and the tunneled atoms recombine at
a time π=2ωz. The contrast of the resulting interference
pattern could be used as a probe of the coherence of
tunneled atoms, and fragmentation of the condensate
[20,21]. Studies of manifestly quantum phenomena such
as the tunneling of interacting many-body systems we have
observed here provide an important arena for future
investigations of quantum behavior at the boundary
between the microscopic and the macroscopic [44].
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