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The collisionality scaling of density and potential coupling together with zonal flow energy transfer and
spectral power is investigated at the stellarator experiment TJ-K. With a poloidal probe array, consisting of
128 Langmuir probes, density and potential fluctuations are measured on four neighboring flux surfaces
simultaneously over the complete poloidal circumference. By analyzing Reynolds stress and pseudo-
Reynolds stress, it is found that, for increasing collisionality, the coupling between density and potential
decreases which hinders the zonal flow drive. Also, as a consequence, the nonlinear energy transfer, as well
as the zonal flow contribution to the complete turbulent spectrum, decreases the same way. This is in line
with theoretical expectations and is a first experimental verification of the importance of collisionality for
large-scale structure formation in magnetically confined toroidal plasmas.
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Drift waves in toroidal plasmas, as well as atmospheric
Rossby waves, tend to self-generate large scale turbulent
structures, e.g., zonal flows (ZFs) and jet streams, respec-
tively [1–3]. In fusion science they are of special interest,
since they are thought to be connected to the spontaneous
transition to a high confinement regime [4–6]. With a
poloidal wave number kθ and toroidal wave number kφ
equal to zero, and a finite radial extent (i.e., kr ≠ 0), the
zonal flow represents an extreme case of a convective cell.
Thereby, zonal flows are pure potential modes and have no
analogous density structure. As in a self-organization
process, Reynolds stresses of the drift waves drive the
shear flow, which leads to a self-amplification of the zonal
flow [7–9]. In contrast to the rotating fluid system, the
zonal flow drive in a plasma crucially depends on the cross
coupling of potential and density fields. The key parameter
in this drift-wave zonal flow system is the collisionality C,
defined as the electron collision frequency in comparison
to the parallel wavelength [10]. In the two dimensional
Hasegawa-Wakatani equations [11,12], as a model for drift-
wave turbulence, it determines the coupling strength
between density and potential and, therefore, the efficiency
of the driving mechanism. For the adiabatic case (C → 0),
the two equations reduce to the Hasegawa-Mima equation
[13] (Charney equation for Rossby waves [14]), while in
the hydrodynamic case (C → ∞), density and potential
decouple and the zonal flow growth is broken. In this work,
for the first time, by gradually changing the collisionality, a
continuous transition between the two limiting cases has
been achieved experimentally, and the scaling of the
spectral energy transfer into the different channels is
studied. For this investigation, a multitude of measurements
at different collisionalities has been performed at the low
temperature experiment stellarator TJ-K [15]. We find that,

for lower collisionalities, meaning a more adiabatic elec-
tron response, the nonlinear energy transfer into the zonal
flow, and also, the relative zonal flow power in the
spectrum, strongly increases. This is the first direct exper-
imental measurement of the effect of collisionality C on the
zonal flow drive.
As a characteristic of zonal flows is the homogeneous

potential perturbation on a complete flux surface, a poloidal
probe array was used to reliably distinguish zonal flows
from the residual turbulence. The array consists of 128
Langmuir probes with 32 probes on each of four neighbor-
ing magnetic flux surfaces and is shown in Fig. 1(a) as used
in [16]. It is designed for an outer port of the stellarator
TJ-K with a triangular cross section, and is placed in the
confined region just inside the separatrix (dashed white
line), where the gradients are steepest. The probes are
spaced nonuniformly in order to get a perpendicular
orientation of probes on every other flux surface. The
average poloidal probe spacing is Δx ¼ 1.37, 1.49, 1.61,
and 1.73 cm on the four different flux surfaces at normal-
ized radii ρ ¼ 0.81, 0.85, 0.89, and 0.94 with a radial
separation of Δr ≈ 0.5 cm. Also, with a spatial uncertainty
of 2 mm, the distances are still below the typical structure
size of 3 to 5 cm [17–19]. The use of Langmuir probes
makes it possible to acquire data with 1 MHz and up to 220

samples for all probes simultaneously. For the poloidal
probe array, it is possible to switch the operation mode for
all 128 probes individually from −90 V probe bias to a
floating probe measuring ion saturation current or floating
potential, respectively. Since temperature fluctuations are
small in TJ-K [20], fluctuations in the ion saturation
current can be associated with density fluctuations
(~Ii;sat ∝ ~n) and floating potential fluctuations with
plasma potential fluctuations ( ~ϕfl ≈ ~ϕpl) [21]. Using two
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neighboring probes, the electric field is measured and the
poloidal E × B drift velocity is given by vE×B≈
ð ~ϕiþ1

fl − ~ϕi
flÞ=ðBΔxÞ. Measuring both velocity components

in the poloidal cross section, the Reynolds stress is then
given as the product of fluctuations in radial ~vr and poloidal
~vθ velocity

R ¼ h ~vr ~vθi ≈
�ð ~ϕθiþ1

fl − ~ϕθi
fl Þð ~ϕriþ1

fl − ~ϕri
fl Þ

rΔθΔrB2

�
: ð1Þ

With the poloidal probe array, the flux surface averaged
Reynolds stress (indicated by h:i) can be measured on
two different flux surfaces, giving the possibility of
getting a direct estimate of the zonal flow drive given by
∂thvθi ¼ −∂rR [22]. In the same discharge, using a
movable triple probe, radial profiles of the ion saturation
current, floating potential, and electron temperature Te are
obtained, the latter from fitting the probe characteristic. The
line-averaged density of the microwave interferometer was
used to get absolute density values ne. In order to cover a
broad collisionality range, 90 plasma experiments were
performed with ion masses ranging from mH

i ≈ 1 u up to
mKr

i ≈ 84 u. Also, for the very high ion masses of krypton,
the wavelengths are still larger than the ion Larmor radius,
and finite Larmor radius effects should be small. At a
2.45 GHz microwave heating frequency and a correspond-
ing magnetic field of B ¼ 72 mT [23], the neutral gas
pressure p0 and microwave power PMW were varied
resulting in densities between ne ≈ 0.7 − 3.0 × 1017 m−3

and electron temperatures ranging from Te ≈ 3.9 to
14.4 eV. For each discharge, the collisionality was calcu-
lated according to [12]

C ¼ ν̂

k̂2∥
∝

Bne
k2∥miTe

5=2 ; ð2Þ

where ν̂ is the normalized collision frequency and k̂∥ the
normalized parallel wavelength [24]. Mainly, by changing
ion mass, the collisionality could be varied by about 2
orders of magnitude, which makes it possible to study the
transition from the hydrodynamic regime (C ≫ 1) to the
adiabatic regime (C ≪ 1).
Figures 1(b) and 1(c) show typical wave number

frequency spectra (kf spectra) of the ion saturation current
and floating potential measured on the second and third
flux surface in a helium discharge. The broad turbulent
spectrum is dominated by turbulent modes with positive
wave numbers, associated with drift waves propagating
into the electron diamagnetic drift direction. A dominant
mode number of m ¼ 4 is plausible since drift waves have
finite parallel wavelength (k∥ ≠ 0) and the experiment has a
rotational transform of ι‐ ≈ 1=4 [24,25]. The kθ ¼ 0 mode
in the potential spectrum is apparent, while not present in
the density. This is the signature of the zonal flow, which is
known to be a pure potential mode, and it also excludes the
possibility of a pure mean background fluctuation, since the
density is not changed.

The zonal flow driving mechanism is based on the
shearing of the drift-wave eddies in a background shear
flow [26]. The collisionality is, thereby, the control param-
eter which determines the efficiency of this driving mecha-
nism. In a simple model with cold ions, the drift-wave
turbulence can be described with the two dimensional
Hasegawa-Wakatani equations [11,12],

∂tnþ fϕ; ng þ κn∂yϕ ¼ C−1ðϕ − nÞ; ð3Þ

∂tΩþ fϕ;Ωg ¼ C−1ðϕ − nÞ: ð4Þ

Here, n, ϕ, and Ω denote the normalized density, the
potential, and the vorticity fluctuations, respectively. κn is
the normalized background density gradient and f:; :g
represents Poisson brackets. Equations (3) and (4), essen-
tially originating from the electron continuity equation and
quasineutrality, respectively, are coupled via the parallel
electron dynamics included in the collisionality C. For an
adiabatic electron response (adiabatic regime C ≪ 1),
density and potential act similar; as for the hydrodynamic
regime (C ≫ 1), the two equations decouple, and density
and potential act as separate fluids. This dependency is
illustrated in Fig. 2(a) by an eddy in a background shear
flow. The spatial shapes of the density (red solid lines) and
the potential perturbation (dashed blue lines) are shown for
low and high collisionality C. A background shear flow

(a)

(b) (c)

FIG. 1. (a) Picture of the poloidal probe array with Langmuir
probes on four flux surfaces. The inset illustrates the measure-
ment of the radial and poloidal electric field with which the
Reynolds stress can be calculated. Logarithmic wave number
frequency spectra of density (b) and potential (c) are shown
below. The kθ ¼ 0mode is the zonal flow, which is not present in
the density.
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(e.g., the zonal flow) tilts the vortex in the density, and also,
through parallel coupling, the potential is deformed. In the
limit of high collisionality, the vortex tilt in the density is
not transferred to the potential anymore. In magnetized
plasma, the potential perturbation leads, via E × B drift, to
vortices perpendicular to the magnetic field. A sheared
eddy has a nonisotropic velocity distribution, giving a
nonzero Reynolds stress and, in turn, leading to an
amplification of the initial shear flow. With this argumen-
tation, it is clear that, with an increased collisionality, the
zonal flow drive is hindered. To get an estimate for the
coupling of density and potential, the so called pseudo-
Reynolds stress, originally introduced to get information
about the Reynolds stress from density measurements [27],
is calculated. The density is, thereby, treated analog to the
potential field. From Eqs. (3) and (1), then, it follows that
the density-based pseudo-Reynolds stress has to be cor-
rected by terms of at least linear order in the collisionality
OðCÞ leading to the following relation between Reynolds
stress Rϕ and pseudo-Reynolds stress Rn:

R ¼ Rϕ ¼
�ð ~nθiþ1 − ~nθiÞð ~nriþ1 − ~nriÞ

rΔθΔrB2

�
þOðCÞ

¼ Rn þOðCÞ: ð5Þ

With a different bias setting of the poloidal probe array, it is
possible to measure Reynolds stress (RS) and pseudo-
Reynolds stress (PRS) at the same time over the poloidal
circumference with a reduced spatial resolution. Probes
measuring ion saturation current alternate with probes on
floating potential when going around the circumference.
Since Reynolds stress and pseudo-Reynolds stress can be
measured on two flux surfaces, the corresponding zonal
flow drive −∂rR of both quantities is obtained. The two
time traces of 220 samples for each discharge have been
cross-correlated, and the scaling of the maximal correlation
between Reynolds-stress drive and pseudo Reynolds-stress
drive with collisionality is shown in Fig. 2(b). Although the
correlation values are small, they are significant and show a
clear trend. For lower collisionality, the correlation between
both parameters increases, pointing to an increased cou-
pling between density and potential.
It was shown that the turbulence in the stellarator TJ-K is

drift-wave dominated [24,28–30], and for the following
analysis of the energy transfer, it is assumed that the
nonlinear wave-coupling equation is satisfied

∂φðk; tÞ
∂t ¼ ΛL

k ðkÞφðk; tÞ

þ 1

2

X
k¼k1þk2

ΛQ
k ðk1; k2Þφðk1; tÞφðk2; tÞ: ð6Þ

Here, φðk; tÞ is a fluctuating quantity, ΛL
k ðkÞ the linear

coupling coefficient, and ΛQ
k ðk1; k2Þ the quadratic coupling

coefficients [31]. With a discretization in time Δt, Eq. (6)
leads to a set of momentum equations which are then
solved using the modified Ritz method introduced by
Kim et al. [32]. This approach to solving the wave-coupling
equation also considers fourth-order moments in order to
avoid a closure approximation. For the transfer of spectral
power Pk, the wave kinetic equation can be derived

∂
∂t Pk ¼ 2γkPk þ

X
k¼k1þk2

Tkðk1; k2Þ: ð7Þ

Since the zonal flow is nonlinearly driven by the turbu-
lence, the nonlinear spectral power transfer function
Tkðk1; k2Þ is of interest for the subsequent analysis, which
is given as

Tkðk1; k2Þ ¼ Re½ΛQ
k ðk1; k2Þhφðk1; tÞφðk2; tÞφ�ðk; tÞit�:

ð8Þ
It should be stressed that the quantities used here are
directly calculated in wave number space, and a conditional
averaging technique is used to calculate the temporal
ensemble average h:it. The power transfer in the
density fluctuation activity, where the nonlinearity in the
E × B drift is included [10], is especially considered for
the scaling. Therefore, the fluctuating quantities are
assigned to φðk1; tÞ ¼ nðk1; tÞ, φðk2; tÞ ¼ nðk2; tÞ, and
φ�ðk; tÞ ¼ ϕðk; tÞ [33]. To omit a reduction in k-space

(a)

(b)

FIG. 2. The graphic (a) illustrates the change of density (red
solid lines) and potential (dashed blue lines) coupling with
collisionality C. For high collisionality density and potential
decouple and the tilt is not transferred to the potential anymore.
The changed density potential coupling is also shown by the
cross-correlation (CC) of Reynolds stress (RS) and pseudo-
Reynolds stress (PRS), which is shown in (b).
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resolution, the ion saturation current and the floating
potential are measured simultaneously on the second and
third flux surface, respectively. For the zonal flow (k ¼ 0),
a positive energy transfer into it is found for all measure-
ments, confirming the inverse energy transfer originally
published in [7] obtained by the Camargo method [10]. In
Fig. 3(a), the scaling over the collisionality of this energy
transfer is shown for several discharges with a variety of
gases. With lower collisionality, the energy transfer to the
zonal flow increases, showing the increased drive by the
drift-wave turbulence. To see if an increased energy transfer
into the zonal flow leads to an increased zonal flow activity,
the total power of the zonal flow is calculated. As the
overall turbulence strongly depends on the background
gradients, the absolute zonal flow power is not interesting,
but the relative contribution to the turbulent spectrum.
Therefore, the relative zonal flow power shown in Fig. 3(b)
is calculated as

PZF=Ptotal ¼
X

f≤8 kHz

Sϕðk ¼ 0; fÞ=
X
k;f

Sϕðk; fÞ;

from the wave number frequency spectrum Sϕðk; fÞ. As
indicated above, for the zonal flow component only, the low
frequency bandpass filtered spectral power is used. In the
adiabatic limit (C → 0), the zonal flow contribution to the
complete spectrum strongly increases, and the relative
power reaches values of up to 29% of the total turbulent
spectral power. To deduce a quantitative assertion, the
collisionality scaling of the relative zonal flow power is
fitted with a power law ∝ Cα, where we find a value of
α ¼ −0.23� 0.02. An increase through a change in the ion
viscosity, which counteracts the Reynolds stress drive,
cannot explain the found scaling, since the ion viscosity
also decreases with higher collisionality.
In summary, the collisionality dependence of the zonal

flow drive was studied in great detail. With the possibility
of Reynolds stress measurements in real space, it was found
that, for increasing collisionality, the coupling between
density and potential decreases, which, in turn, makes the
zonal flow driving mechanism less effective. Also, as a
result, the nonlinear energy transfer into the zonal flow, as
well as the relative spectral power of the zonal flow
decrease with higher collisionality. This is a direct test
of a fundamental mechanism in plasma turbulence on a
microscopic level of plasma turbulent fluctuations and also
represents a first verification of the importance of colli-
sionality for large-scale structure formation in magnetically
confined toroidal plasmas. Seen in a broader context, the
collisionality changes the coupling in the predator-prey-like
system, which was confirmed by simulations [34].
Additionally, beyond the significance in fusion science,
the crucial role that collisionality plays in the composition
of plasma turbulence can also become important in nature,
e.g., ionospheric turbulence [35].
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