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We construct a numerical solution of the small-x evolution equations derived in our recent work [J. High
Energy Phys. 01 (2016) 072.] for the (anti)quark transverse momentum dependent helicity TMDs and
parton distribution functions (PDFs) as well as the g1 structure function. We focus on the case of large Nc,
where one finds a closed set of equations. Employing the extracted intercept, we are able to predict directly
from theory the behavior of the quark helicity PDFs at small x, which should have important
phenomenological consequences. We also give an estimate of how much of the proton’s spin carried
by the quarks may be at small x and what impact this has on the spin puzzle.
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Introduction.—For many decades, it has been known that
the proton is a complex object composed of quarks,
antiquarks, and gluons (collectively called partons). The
properties of the proton are thus emergent phenomena
arising from the dynamics of partons. For example, the spin
of the proton (¼ 1=2 in units of ℏ), which is one of its most
fundamental quantum numbers, should be a sum of the spin
and orbital angular momentum (OAM) of its partons. This
can be expressed in terms of helicity sum rules [1–4], like
that of Jaffe and Manohar [1]

Sq þ Lq þ SG þ LG ¼ 1

2
; ð1Þ

where Sq and SG are the spin of the quarks and gluons,
respectively, while Lq and LG denote their OAM. The
quantities Sq and SG are defined as the following integrals
over Bjorken x at a fixed momentum scale Q2:

SqðQ2Þ ¼ 1

2

Z1
0

dxΔΣðx;Q2Þ; ð2Þ

SGðQ2Þ ¼
Z1
0

dxΔGðx;Q2Þ; ð3Þ

with

ΔΣðx;Q2Þ ¼ ½Δuþ Δuþ Δdþ Δdþ � � ��ðx;Q2Þ; ð4Þ

where the helicity parton distribution functions (PDFs) for
a parton of flavor f ¼ u; u; d; d;…; G are denoted by Δf.
These are equal to the number density of partons with the

same helicity as the proton minus the number density of
those with opposite helicity.
In the late 1980s, the community was largely surprised

when the European Muon Collaboration (EMC) measured
Sq to be a significantly smaller fraction of the proton’s spin
than had been naïvely expected [6,7]. This result led to the
spin puzzle centered around the question of how the pieces
in Eq. (1) add up to 1=2. To help pin down another term in
this sum, there has been intense effort over the last decade
to measure and extract SG. Recent experiments show that
SG can give a more substantial fraction of the proton’s spin
than once thought [8,9]. The current quark and gluon spin
values extracted from the experimental data are SqðQ2 ¼
10 GeV2Þ ≈ 0.15–0.20 (integrated over 0.001 < x < 1)
and SGðQ2 ¼ 10 GeV2Þ ≈ 0.13–0.26 (integrated over
0.05 < x < 1) [10]. One option, then, is that the rest of
the proton’s spin is due to quark and gluon OAM. However,
note that the quoted values for Sq and SG are for integrals
over a truncated range xmin < x < 1 (where the relevant
quantities are constrained by data), while the formulas in
Eqs. (2), (3) involve integrals over the full range 0 < x < 1.
This leaves open the possibility that there could be
significant quark and gluon spin at small x, which is the
scenario we explore in this Letter.
The use of the small-x formalism to analyze quark

polarization was pioneered decades ago by Kirschner
and Lipatov [14] (see also [15–17]) and later by Bartels,
Ermolaev, and Ryskin (herein referred to as BER) in the
context of the structure function g1ðx;Q2Þ [18,19]. In
particular, BER resummed double logarithms αs ln2ð1=xÞ
using infrared evolution equations to predict a strong
growth in g1ðx;Q2Þ at small x, a scenario that would have
a major impact on the spin puzzle. In a recent work, we
formulated the problem in a different language, which
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employs light cone Wilson line operators and color dipoles
[20–30], to derive evolution equations relevant for the
[collinear and transverse momentum dependent (TMD)]
helicity PDFs as well as the g1 structure function [31].
In what follows, we solve these helicity evolution

equations numerically (in the limit of a large number of
colors Nc) in order to give a direct input from theory on the
small-x behavior of helicity PDFs, which should have
important phenomenological consequences. We extract the
high-energy intercept αh to predict the small-x asymptotics
of ΔΣðx;Q2Þ ∼ ð1=xÞαh and estimate how much of the
proton’s spin carried by the quarks one can expect to find at
low x.
The helicity evolution equations.—As shown in [32], at

small x the quark helicity PDF in the flavor-singlet case
ΔqSðx;Q2Þ [and, therefore, ΔΣðx;Q2Þ] can be written in
terms of the impact-parameter integrated polarized dipole
amplitude Gðx210; zÞ as [33]

ΔqSðx;Q2Þ ¼ Nc

2π3
X
f

Z1
zi

dz
z

Z1zQ2

1
zs

dx210
x210

Gðx210; zÞ: ð5Þ

Here x10 ¼ x1 − x0 is the dipole size, z is the fraction of the
probe’s longitudinal momentum carried by the softest (anti)
quark in the dipole, zi ¼ Λ2=s, with Λ an infrared (IR)
momentum cutoff, and s is the center-of-mass energy
squared. The singularity at x10 ¼ 0 is regulated by requir-
ing that x10 ≡ jx10j > 1=ðzsÞ, with 1=ðzsÞ the shortest
distance (squared) allowed in the problem.
To determine Gðx210; zÞ, we will solve the evolution

equations derived in [31]. They resum powers of
αs ln2ð1=xÞ, which is the double-logarithmic approxima-
tion (DLA). Similar to the unpolarized case [20–30],
helicity evolution equations do not close in general,
forming a closed set only in the large-Nc and large-Nc &

Nf limits (with Nf the number of flavors) [31]. Ignoring
leading-logarithmic (LLA) saturation corrections [34], the
large-Nc DLA evolution of Gðx210; zÞ is governed by
Eq. (83a) in [31] integrated over all impact parameters,

Gðx210; zÞ ¼ Gð0Þðx210; zÞ þ
αsNc

2π

Zz
1

x2
10

s

dz0

z0

Zx210
1

z0s

dx221
x221

× ½Γðx210; x221; z0Þ þ 3Gðx221; z0Þ�: ð6Þ

In Eq. (6), one also has the object Γðx210; x221; z0Þ, called a
“neighbor” dipole amplitude [31]. The neighbor dipole
obeys the (large-Nc, strictly DLA) evolution equation [31]

Γðx210; x221; z0Þ ¼ Γð0Þðx210; x221; z0Þ þ
αsNc

2π

Zz0
1

x2
10

s

dz00

z00

×
Zminfx2
10
;x2

21
z0
z00g

1

z00s

dx232
x232

½Γðx210; x232; z00Þ

þ 3Gðx232; z00Þ�: ð7Þ

Note that in Eqs. (6), (7) we have neglected small
differences in the dipole sizes x210 ≈ x220 ≈ x230. The solution
to the simultaneous equations (6), (7), which we discuss in
the next section, allows us to determine the small-x
behavior of Gðx210; zÞ, and, hence, of ΔqSðx;Q2Þ in the
dominant flavor singlet channel.
Numerical solution to the large-Nc evolution

equations.—We start by defining new coordinates,

η≡ ln
z
zi
; η0≡ ln

z0

zi
; η00≡ ln

z00

zi
;

s10≡ ln
1

x210Λ
2
; s21≡ ln

1

x221Λ
2
; s32≡ ln

1

x232Λ
2
; ð8Þ

as well as rescaling all η’s and sij’s,

η →

ffiffiffiffiffiffiffiffiffiffi
2π

αsNc

s
η; sij →

ffiffiffiffiffiffiffiffiffiffi
2π

αsNc

s
sij: ð9Þ

Using these variables, we write the large-Nc helicity
evolution equations (6), (7) as

Gðs10; ηÞ ¼ Gð0Þðs10; ηÞ þ
Zη
s10

dη0
Zη0
s10

ds21

× ½Γðs10; s21; η0Þ þ 3Gðs21; η0Þ� ð10aÞ

Γðs10; s21; η0Þ ¼ Γð0Þðs10; s21; η0Þ þ
Zη0
s10

dη00

×
Zη00

max fs10;s21þη00−η0g

ds32½Γðs10; s32; η00Þ

þ 3Gðs32; η00Þ�: ð10bÞ

Note that the ranges of the s21 and s32 integrations are
restricted to positive values of s21 and s32 as long as s10 is
positive; therefore, we always stay above the IR cutoffΛ (in
momentum space). The initial conditions for Eqs. (10) are
[32,35]
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Gð0Þðs10; ηÞ ¼ Γð0Þðs10; s21; ηÞ

¼ α2sπ
CF

Nc
½CFη − 2ðη − s10Þ�; ð11Þ

with CF ¼ ðN2
c − 1Þ=ð2NcÞ. Since the equations at hand

are linear, and we are mainly interested in the high-energy
intercept, we can scale out α2sπCF=Nc.
In order to solve Eqs. (10) [36], we first write down a

discretized version of them

Gij ¼ Gð0Þ
ij þ ΔηΔs

Xj−1
j0¼i

Xj0
i0¼i

½Γii0j0 þ 3Gi0j0 �; ð12aÞ

Γikj ¼ Γð0Þ
ikjþΔηΔs

Xj−1
j0¼i

Xj0
i0¼maxfi;kþj0−jg

½Γii0j0 þ 3Gi0j0 �; ð12bÞ

where Gij ≡Gðsi; ηjÞ, Γikj ≡ Γðsi; sk; ηjÞ, and

Δη ¼ ηmax

Nη
; Δs ¼ smax

Ns
; ð13Þ

with ηmax the maximum η value and Nη the number of grid
steps in the η direction, and likewise, for smax, Ns. The
discretized equations (12) are exact in the limit Δη, Δs → 0
and ηmax, smax → ∞. To optimize the numerics, we
set ηmax ¼ smax.
With the discretized evolution equations (12) in hand

[along with the initial conditions (11) suitably discretized],
we first choose values for ηmax ¼ smax and Δη ¼ Δs. We
then systematically go through the η-s grid in such a way
that each Gij (and Γijk) only depends on G, Γ values that
have already been calculated. Thus, we can determine Gij

for each i, j. Our numerical solution (for ηmax ¼ 40,
Δη ¼ 0.05) is plotted in Fig. 1.
We next assume that in the high-energy limit

Gðs10; η; ηmax;ΔηÞ ∼ eαhðηmax;ΔηÞηþβhðηmax;ΔηÞs10 ð14Þ

with some coefficients αh, βh that are functions of
ðηmax;ΔηÞ. We then fit ln ½Gðs01; η; ηmax;ΔηÞ� vs η for
s10 ¼ 0, using only η ∈ ½0.75ηmax; ηmax�. This allows us to
extract the intercept αhðηmax;ΔηÞ. We perform this pro-
cedure for ηmax ¼ 10, 20, 30, 40, 50, 60, 70, and
Δη ∈ ½Δηmin; 0.1�, where Δηmin is the smallest value of
Δη, for a given ηmax, that is within our computational limits.
The various intercepts we obtained are shown by the “data”
points in Fig. 2.
As a last step, we extrapolate to the physical point

ηmax → ∞, Δη → 0 by performing a two-dimensional fit to
αhðηmax;ΔηÞ, from which we can extract αhðηmax →
∞;Δη → 0Þ≡ αh (see Fig. 2). In the end, we obtain
αh ¼ 2.31. Therefore, we find

ΔqSðx;Q2Þ ∼ ΔΣðx;Q2Þ ∼
�
1

x

�
αh ð15Þ

with

αh ¼ 2.31

ffiffiffiffiffiffiffiffiffiffi
αsNc

2π

r
; ð16Þ

where we have reinstated the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αsNc=2π

p
originally

scaled out by Eq. (9). (We also note that βh ≈ −αh.) Given
that quarks can split into gluons at any step of evolution, we
suspect that the gluon helicity PDF will have the same
small-x intercept (16) but leave a rigorous calculation for
future work. We mention that the uncertainty in αh due to
the choice of initial conditions and the extrapolation to the

FIG. 1. The numerical solution of Eqs. (10) for the polarized
dipole amplitude G plotted as a function of rescaled “rapidity” η
and transverse variable s10.

FIG. 2. Numerical results for our extraction of αh. The “data”
points are the intercepts we obtained for various ðηmax;ΔηÞ. The
dark shaded piece of the plane indicates the region that is within
our computational range, while the light area shows our extrapo-
lation to the physical point 1=ηmax ¼ Δη ¼ 0 (large solid dot).
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physical point are both < 1% and negligible. This error is
strictly from our current numerical analysis and does not
include the impact on αh that arises from including Nf ≠ 0

as well as from next-to-leading order and running coupling
corrections.
We note that the value in Eq. (16) is in disagreement with

the “pure glue” intercept of 3.66
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αsNc=2π

p
[38] obtained

by BER [19] by about 35%. In Fig. 3, we compare these
two intercepts along with that for unpolarized LO BFKL
evolution (all twist and twist-2). Interestingly, the leading
twist approximation to αP − 1 in BFKL evolution is larger
than the exact all-twist intercept by about 30% [39]; it is
possible something similar is occurring for helicity evolu-
tion. In Ref. [32], we have explored this possibility,
performed various analytical cross-checks of our helicity
evolution equations, and compared to BER where possible;
we have not found any inconsistencies in our result.
Impact on the proton spin.—In order to determine the

quark and gluon spin based on Eqs. (2), (3), one needs to
extract the helicity PDFs. There are several groups who
have performed such analyses, e.g., DSSV [40,41], JAM
[42,43], LSS [44–46], NNPDF [47,48]. While the focus at
small x has been on the behavior of ΔGðx;Q2Þ, there is
actually quite a bit of uncertainty in the size ofΔΣðx;Q2Þ in
that regime as well.
Let us define the truncated integral

ΔΣ½xmin�ðQ2Þ≡
Z

1

xmin

dxΔΣðx;Q2Þ: ð17Þ

One finds for DSSV14 [41] that the central value of the full
integral ΔΣ½0�ð10 GeV2Þ is about 40% smaller than
ΔΣ½0.001�ð10GeV2Þ. The NNPDF14 [48] helicity PDFs lead
to a similar decrease, although, due to the nature of neural
network fits, the uncertainty in this extrapolation is 100%.
On the other hand, for JAM16 [43] helicity PDFs the
decrease from the truncated to the full integral ofΔΣðx;Q2Þ
seems to be at most a few percent. The origin of this
uncertainty, and more generally, the behavior of ΔΣðx;Q2Þ
at small x, is mainly due to varying predictions for the size

and shape of the sea helicity PDFs, in particular, Δsðx;Q2Þ
[40–43,47–49]. So far, the only constraint on Δsðx;Q2Þ,
and how it evolves at small x, comes from the weak neutron
and hyperon decay constants. Therefore, there is a definite
need for direct input from theory on the small-x intercept of
ΔΣðx;Q2Þ: this is what we have provided in this Letter.
We now will attempt to quantify how the small-x

behavior of ΔΣðx;Q2Þ derived here affects the integral
in Eq. (2). We take a simple approach and leave a more
rigorous phenomenological study for future work. First, we
attach a curve Δ ~Σðx;Q2Þ ¼ Nx−αh [with αh given in (16)]
to the DSSV14 result for ΔΣðx;Q2Þ at a particular small-x
point x0. Next, we fix the normalization N by requiring
Δ ~Σðx0; Q2Þ ¼ ΔΣðx0; Q2Þ. Finally, we calculate the trun-
cated integral (17) of the modified quark helicity PDF

ΔΣmodðx;Q2Þ≡ θðx − x0ÞΔΣðx;Q2Þ
þ θðx0 − xÞΔ ~Σðx;Q2Þ ð18Þ

for different x0 values. The results are shown in Fig. 4 for
Q2 ¼ 10 GeV2 and αs ≈ 0.25, in which case αh ≈ 0.80.
We see that the small-x evolution of ΔΣðx;Q2Þ could

offer a moderate to significant enhancement to the quark
spin, depending on where in x the effects set in and on the
parametrization of the helicity PDFs at higher x. Thus, it
will be important to incorporate the results of this work, and
more generally, the small-x helicity evolution equations
discussed here, into future extractions of helicity PDFs that
include data at smaller x from an Electron-Ion Collider.
Conclusion.—In this Letter, we have numerically solved

the small-x helicity evolution equations of Ref. [31] in
the large-Nc limit. We found an intercept of αh ¼
2.31

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αsNc=2π

p
, which, from Eq. (15), is a direct input

from theory on the behavior of ΔΣðx;Q2Þ at small x.
Although a more rigorous phenomenological study is
needed, we demonstrated in a simple approach that such
an intercept could offer a moderate to significant enhance-
ment of the quark contribution to the proton spin.
Therefore, it appears imperative to include the effects of
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h (BER)

h (this work)

LO BFKL (twist- 2)

LO BFKL (all twist)

FIG. 3. Plot of the intercept vs αs for helicity evolution (long-
dashed and dot-dashed lines) and unpolarized LO BFKL evolu-
tion (solid and short-dashed lines). The long-dashed line shows
the value of αh extracted in this work for large Nc while the dot-
dashed line gives that for the “pure glue” case of BER [19].
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FIG. 4. Plot ofΔΣ½xmin�ðQ2Þ vs xmin atQ2 ¼ 10 GeV2. The solid
curve is from DSSV14 [41]. The dot-dashed, long-dashed, and
short-dashed curves are from various small-x modifications of
ΔΣðx;Q2Þ at x0 ¼ 0.03, 0.01, 0.001, respectively, using our
helicity intercept (see the text for details).
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the small-x helicity evolution discussed here in future fits of
helicity PDFs, especially those to be obtained at an
Electron-Ion Collider.
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