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We study the Gauss-Bonnet (GB) term as the leading higher-curvature correction to pure Einstein
gravity. Assuming a tree-level ultraviolet completion free of ghosts or tachyons, we prove that the GB
term has a nonnegative coefficient in dimensions greater than 4. Our result follows from unitarity of the
spectral representation for a general ultraviolet completion of the GB term.
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Introduction.—Effective field theory lore states that,
in constructing a Lagrangian, one should include all
operators allowed by symmetry and power counting with
arbitrary coefficients. Naively, this implies an immense
freedom for low-energy model building. However,
not all quantum effective field theories are created equal:
some are compatible with ultraviolet completion,
while others reside in the so-called swampland [1–3],
impervious to string-theoretic completion or, worse, any
completion conforming to the usual axioms of quantum
field theory.
An ongoing effort has been undertaken to demarcate

the boundaries of healthy effective field theories, with
constraints derived from both top-down and bottom-
up reasoning. An iconic example of the former is the
weak gravity conjecture [4], which was deduced from
string-theoretic examples and black hole thought experi-
ments. In the latter approach, one conceives bounds
purely within the logic of low-energy effective theory,
e.g., from considerations of causality, unitarity, and
locality or analyticity for long-distance observables
such as scattering amplitudes and particle trajectories
[1,5–19].
In this Letter, we derive a simple bound on curvature-

squared corrections to Einstein gravity. Taking a low-
energy perspective, we study gravity as an effective
field theory described by the Einstein-Hilbert action
[20], S ¼ R

dDx
ffiffiffiffiffiffi−gp

R=2κ2, whose higher-curvature cor-
rections a priori include RμνρσRμνρσ, RμνRμν, and R2.
However, the usual invariance under field redefinitions
implies that leading corrections in the derivative expan-
sion are defined only up to equations of motion, so
those operators involving R and Rμν can be discarded.
Hence, the only nontrivial leading correction to pure
Einstein gravity is effectively RμνρσRμνρσ, which up to
equations of motion is equivalent to the Gauss-Bonnet
(GB) term

ΔS ¼
Z

dDx
ffiffiffiffiffiffi
−g

p
λðRμνρσRμνρσ − 4RμνRμν þ R2Þ: ð1Þ

The GB term is a total derivative in D ¼ 4, so we take
D > 4 throughout. The GB term is ghost-free [21] and is
ubiquitous in string-theoretic completions of gravity.
The coupling constant λ is an important low-energy

probe of the ultraviolet completion of general relativity.
The sign of λ is also of particular interest from holographic
considerations, being related to the viscosity-to-entropy
ratio of the dual conformal field theory (see Ref. [22] and
refs. therein). More importantly, λ ≥ 0 appears to be a
generic prediction of string theory: λ ¼ 0 in type II
superstring theory [23], while λ > 0 for the bosonic
[21], heterotic [24], and type I [25] string.
Here we explore theories in which the GB term is

generated by weakly coupled dynamics below the Planck
scale, corresponding to large λ in natural units. Furthermore,
we assume that “primordial” contributions to the GB term—
i.e., contributions present in the ultraviolet but unaccompa-
nied by new states—are subdominant. This assumption is
reasonable because a primordial GB term will violate
unitarity below the Planck scale. In addition, Ref. [16]
demonstrated how a primordial GB term violates causality
unless new states are introduced. Moreover, it can incur
potential violations of analyticity [18] and the second law of
black hole thermodynamics [26]. All of these issues strongly
motivate consideration of a GB term generated dominantly
by weakly coupled ultraviolet dynamics.
Within these assumptions, wewill prove that λ ≥ 0 for any

unitary tree-level ultraviolet completion of the GB term. To
do so,we first enumerate interactions that couple gravitons to
massive states in order to generate the GB term at tree level.
We then introduce a general spectral representation for the
two-point function for these massive degrees of freedom.
Finally, we show how unitarity of the spectral representation
fixes the sign of the curvature-squared operator coefficient in
the gravitational effective theory.
Coupling to massive states.—In this section, we study

the structure of weakly coupled ultraviolet dynamics that
generates curvature-squared corrections to gravity at low
energies. As noted earlier, we can freely substitute the tree-
level equations of motion—i.e., Einstein’s equations—into
the leading curvature corrections in Eq. (1). In practice, this
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means that the GB term is, at leading order in the derivative
expansion, equivalent to the Riemann-squared operator and
the Weyl-squared operator,

CμνρσCμνρσ ¼ RμνρσRμνρσ −
4

D − 2
RμνRμν

þ 2

ðD − 1ÞðD − 2ÞR
2; ð2Þ

where the Weyl tensor is

Cμνρσ ¼ Rμνρσ −
1

D − 2
ðgμ½ρRσ�ν − gν½ρRσ�μÞ

þ 1

ðD − 1ÞðD − 2ÞRgμ½ρgσ�ν ð3Þ

and square brackets on indices denote antisymmetrization
without normalization, i.e., A½μν� ¼ Aμν − Aνμ. In the pres-
ence of massless matter or gauge fields, this equivalence
holds modulo additional interactions involving the stress-
energy tensor.
This all implies that the low-energy coefficients of the

GB term, the Riemann-squared term, and the Weyl-squared
term are equal. For technical simplicity, we therefore recast
the action as

S ¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
R
2κ2

þ λCμνρσCμνρσ

�
ð4Þ

using the freedom of equations of motion. Let us note that
the above action applies to a low-energy theory comprised
purely of massless gravitons. If there are additional
spectator massless matter fields or gauge fields, there will
be additional terms involving the stress-energy tensor that
do not affect our arguments.
Throughout our analysis, we assume a weakly coupled

ultraviolet completion of gravity. In turn, this assumption
implies that high-energy graviton scattering is unitarized by
tree-level exchanges of heavy states. The reason for this is as
follows. In any theory that is weakly coupled from the
ultraviolet to the infrared, there is, by definition, a well-
defined ℏ expansion at all scales. Crucially, in general
relativity, diffeomorphism symmetry relates the kinetic term
for the graviton to its interactions within the Einstein-Hilbert
term. Since the former is manifestly an Oð1=ℏÞ tree-level
effect, then so, too, is the latter, which means that it can only
be unitarized by tree-level exchanges.
A similar line of reasoning applies to the nonlinear sigma

model, which is why unitarization of pion scattering at
weak coupling can only be achieved via tree-level Higgs
exchange. More generally, while the weak coupling
assumption could potentially be relaxed through an
accounting of loop corrections as in Ref. [6], such an
approach would apply to the derivation of positivity bounds
via scattering amplitudes and analytic dispersion relations
(e.g., Ref. [18]), as opposed to the unitarity-based methods
of the present work.

In contrast to the leading-order gravity action, operators
like the GB term are separately diffeomorphism invariant
and are not directly connected to the Einstein-Hilbert term
via symmetry. Hence, even at weak coupling, the GB
operator can be ultraviolet completed at tree or loop level.
An analogous statement is true for Euler-Heisenberg
higher-dimension operators in gauge theory: since they
are not connected directly to the gauge kinetic term, they
can arise from tree-level exchange or at loop order.
Nevertheless, since high-energy graviton scattering is

unitarized at tree level, it is well motivated to focus on tree-
level ultraviolet completions of the GB term. Indeed, this is
how the GB term arises in the low-energy gravitational
effective actions of string theories. Thus, from here on we
assume that Eq. (1) arises from the exchange of heavy states
at tree level.
Next, let us systematically enumerate all possible ultra-

violet-completing dynamics for the GB term. Denoting a
heavy state by χ, we must identify all diffeomorphism-
invariant couplings between χ and gravitons. These inter-
actions could involve one, two, or more powers of χ, which
we now consider.
For interactions that are linear in χ, any derivatives on χ

can always be shuffled onto the gravitons via integration by
parts. Since χ is like a matter field, it by construction
transforms as a tensor and thus necessarily couples to some
combination of gravitons that also transforms as a tensor.
(By tensor, we simply mean an object that transforms
covariantly under nonlinear coordinate transformations.
Since the metric gμν is a tensor, it is convenient to
parametrize all dependence of the graviton through gμν,
its associated curvature tensors, and covariant derivatives
∇μ.) If this tensor of gravitons has no derivatives, then in
the flat-space limit χ appears as a tadpole in the Lagrangian,
so the corresponding term is eliminated once we expand
around the proper vacuum. On the other hand, if this tensor
has exactly one derivative, then the resulting operator must
be a total derivative since the metric is covariantly constant.
Finally, if this tensor has two derivatives, then it has mass
dimension 2 and thus just the right power counting to
induce a curvature-squared operator. Indeed, any more
derivatives will generate operators of higher order than
curvature squared in the derivative expansion.
The only possible tensors of mass dimension 2 con-

structed from the metric are the Riemann tensor and its
contractions [27]. Hence, any graviton interactions that are
linear in χ must take the form

yCμνρσχ
μνρσ; ð5Þ

where χμνρσ is a field representing all the massive states that
generate the GB term and y is a coupling constant.
Analogous operators involving Rμν and R can be discarded
by equations of motion.
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Without loss of generality, we can take χμνρσ in Eq. (5) to
possess all of the index properties of the Weyl tensor,
namely, the requisite (anti-)symmetries, the first Bianchi
identity, and on-shell tracelessness. Any components of
χμνρσ that violate these symmetry properties are automati-
cally projected out by the Weyl tensor in Eq. (5).
Note that Eq. (5) induces mixing between the graviton

and the heavy state. However, since this preserves diffeo-
morphism invariance, the resulting massless eigenstate
should still be interpreted as the massless graviton.
On the other hand, interactions that are quadratic in χ

will automatically produce new heavy states in pairs. To
generate an effective operator involving only gravitons, we
can close the loop of heavy states, but this interaction goes
beyond tree level and is thus suppressed at weak coupling.
An important exception to this occurs if χ mixes with the
graviton, in which case we must introduce Eq. (5) anyway.
Similar arguments apply for interactions with higher
powers of χ, but the final result is the same: any weakly
coupled ultraviolet completion of the GB term will involve
the operator in Eq. (5).
Spectrum of massive states.—Next, we construct a

general Källén-Lehmann spectral representation [28,29]
for the heavy states χ following the analysis of
Refs. [13,14,17]. By expanding the metric gμν around a
flat background ημν, we can represent the χ two-point
function in D dimensions as

hχμνρσðkÞχαβγδðk0Þi

¼ iδDðkþ k0Þ
Z

∞

0

dμ2
ρðμ2Þ

−k2 − μ2 þ iϵ
Πμνρσαβγδ; ð6Þ

where k2 is contracted with the flat metric. Here, Πμνρσαβγδ

is the propagator numerator for χμνρσ and ρðμ2Þ is the
spectral density encoding arbitrary ultraviolet dynamics in
terms of a distribution of poles corresponding to each
massive state. Since we are working at tree level, ρðμ2Þ is
just a sum over delta functions, so the spectral representa-
tion is merely a simple way to package a set of resonances.
The absence of tachyons implies that μ2 ≥ 0. As we will

soon see, the propagator numerator Πμνρσαβγδ is highly
constrained by its symmetries and unitarity. In turn,
ρðμ2Þ ≥ 0 is required if the theory is to be ghost-free
[28,29]. The fact that the spectrum is gapped implies
regularity of the two-point function as k → 0, so the
spectral density should vanish as μ2 → 0.
Unitarity requires that the on-shell propagator numerator

be a sum over the tensor product of the physical polar-
izations [30]. That is, when the on-shell condition k2 ¼
−μ2 is satisfied, the propagator numerator is

Πμνρσαβγδ ¼
X
i

εiμνρσε
�
iαβγδ; ð7Þ

where εiμνρσ are the physical polarization states of χμνρσ,
indexed by i and normalized so that εiμνρσε

�μνρσ
j ¼ δij. By

definition, the polarization tensors transform in represen-
tations of the SOðD − 1Þ little group for the massive state
χμνρσ. Consequently, the polarizations must reside in the
subspace transverse to the momentum of χμνρσ. From
Eq. (7), this implies the transversality condition for on-
shell kμ,

kμΠμνρσαβγδ ¼ 0 ð8Þ

and similarly for all other contractions.
Note that χμνρσ is not a canonical spin-four state [31–34]

since it is not fully symmetric. Rather, as we noted in the
previous section, χμνρσ can, without loss of generality, be
taken to have the index properties of the Weyl tensor, which
are then inherited by the corresponding polarizations as
well as the propagator numerator by Eq. (7). For example,
on-shell tracelessness of χμνρσ implies that, when the on-
shell condition is satisfied, Πμνρσαβγδ vanishes when any
two indices among the first set of four are contracted and
similarly for the second set. Because we do not a priori
know the form of the propagator numerator, we must
construct it purely from its symmetries and the on-shell
transversality and tracelessness conditions.
The most general construction begins by considering

Πμνρσαβγδ to be an arbitrary eight-index tensor built out of
ημν and kμ. Then, in general D, we impose the requisite
symmetries coming from the index properties of the Weyl
tensor and symmetry on exchange of the two copies of χμνρσ:
antisymmetry on the first and second pairs of indices,
symmetry under the exchange of the first and second index
pairs, symmetry under the exchange of the first and second
sets of four indices, the first Bianchi identity Πμ½νρσ�αβγδ ¼
Πμνρσα½βγδ� ¼ 0, on-shell tracelessness on each set of four
indices (for arbitrary metric contraction of two indices), and
on-shell transversality per Eq. (8). We discover that these
conditions are enough to fix the propagator numerator
Πμνρσαβγδ up to some as-yet-unspecified coefficient β:

Πμνρσ
αβγδ ¼ β½2ðD − 2ÞðD − 3ÞðΠμ½αΠν

β�Πρ½γΠσ
δ�

þ Πμ½γΠν
δ�Πρ½αΠσ

β�Þ
þ ðD − 2ÞðD − 3ÞðΠ½μ

δΠν�½αΠ½ρ
β�Πσ�

γ

− Π½μ
γΠν�½αΠ½ρ

β�Πσ�
δÞ

− 3ðD − 2ÞðΠ½μ½αΠν�½ρΠβ�½γΠσ�
δ�

þ Π½μ½γΠν�½ρΠδ�½αΠσ�
β�Þ

þ 12Πμ½ρΠσ�νΠα½γΠδ�β�; ð9Þ

wherewe found that the result could bewritten in terms of the
Proca propagator numerator
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Πμν ¼ ημν þ
kμkν
μ2

: ð10Þ

The appearanceof this dependenceon the projection operator
Πμν is not surprising given the transversality condition (8).
However, we emphasize that we did not assume beforehand
that Πμνρσαβγδ could be expressed as a function of the Proca
propagator numerator.
Now, by the completeness relation (7), the full trace of

the propagator numerator counts the number of physical
degrees of freedom, so we must have Πμνρσ

μνρσ > 0.
Specifically, the number of independent physical degrees
of freedom in χμνρσ is just the number of possible polar-
izations. This is the number of tensors εiμνρσ with the
symmetries of the Weyl tensor that respect the trans-
versality condition. Working through the combinatorics
is straightforward and one finds that the number of physical
degrees of freedom is

N ¼ 1

12
ðDþ 1ÞDðD − 1ÞðD − 4Þ: ð11Þ

On the other hand, from Eq. (9), we find the beautiful
expression

Πμνρσ
μνρσ

¼ 2βðDþ 1ÞDðD − 1ÞðD − 2ÞðD − 3ÞðD − 4Þ; ð12Þ

which for D > 4 is positive if and only if β > 0. Requiring
that Πμνρσ

μνρσ ¼ N, we have

β ¼ 1

24ðD − 2ÞðD − 3Þ : ð13Þ

Equivalently, we recall that a propagator numerator, when
taken on shell, is a projector onto the space orthogonal to kμ
[35] and onto tensors with the requisite index symmetries.
Requiring that the propagator numerator be idempotent as a
projection operator thus fixes the normalization.
Integrating out massive states.—We can now compute

the higher-curvature corrections induced by integrating out
χ. As noted earlier, interactions between gravitons and two
or more powers of χ can contribute to higher-curvature
corrections given the mixing term in Eq. (5). Thus, to study
graviton scattering at low energies, it would be necessary to
do a proper accounting of all the interactions involving χ
beyond even Eq. (5). As this is rather cumbersome, it is
more convenient to compute the off-shell two-point func-
tion for the graviton. This low-energy operator receives
contributions from Eq. (5), but crucially is independent of
the interactions nonlinear in χ.
Armed with a general parametrization of the couplings

and spectrum of the massive states, we can now integrate
them out. Using Eqs. (9) and (13), one finds

CμνρσΠμνρσαβγδCαβγδ ¼k→0
CμνρσCμνρσ: ð14Þ

Since we are computing the two-point function for grav-
itons, we are implicitly expanding Cμνρσ at linear order in
gravitons. Integrating out χμνρσ at low momentum transfer,
we obtain the effective operator

y2

2
CμνρσCμνρσ

Z
∞

0

dμ2

μ2
ρðμ2Þ: ð15Þ

We then deduce the coefficient of the Weyl-squared
operator in Eq. (4),

λ ¼ y2

2

Z
∞

0

dμ2

μ2
ρðμ2Þ ≥ 0: ð16Þ

Thus, since the spectral function is nonnegative by unitar-
ity, the sign of the coefficient λ of the GB operator is
nonnegative in a consistent tree-level ultraviolet completion
in D > 4.
This bound is consistent with results from string theory

[21,23–25]. Moreover, our bound constitutes a requisite
consistency condition for any candidate tree-level theory of
quantum gravity. Proving positivity of the GB coefficient
using a different approach—analytic dispersion relations—
is the subject of current ongoing research [36], though
subtleties exist in applying analyticity bounds to graviton
amplitudes [1,18]. While standard axioms of quantum field
theory, e.g., locality, may be violated in quantum gravity,
dispersion relations themselves seem to remain robust [37].
Delineating the boundary between the swampland and the

landscape can provide insights formodel building and for our
broader understanding of gravitational ultraviolet comple-
tion of quantum field theories. Open problems include
finding ways to apply infrared consistency bounds in non-
perturbative contexts, as well as connecting bounds obtained
from infrared- and ultraviolet-dependent reasoning.
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