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We analyze the effect of gravitational backreaction on cosmic string loops with kinks, which is an
important determinant of the shape, and thus the potential observability, of string loops which may exist in
the Universe today. Kinks are not rounded off, but may be straightened out. This means that backreaction
will only cause loops with kinks to develop cusps after some potentially large fraction of their lifetimes. In
some loops, symmetries prevent even this process, so that the loop evaporates in a self-similar fashion and
the kinks are unchanged. As an example, we discuss backreaction on the rectangular Garfinkle-Vachaspati
loop.
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Cosmic strings are effectively one-dimensional objects
which may have formed through brane inflation or sym-
metry breaking transitions in the early Universe. If cosmic
strings exist, there is a network consisting of superhorizon
strings and a distribution of loops. For a review, see
Ref. [1]. The long strings lose energy into loop production,
and (if there are no couplings to other low-mass fields) the
loops decay by emission of gravitational waves.
These gravitational waves have several important roles.

First, they allow string loops to dissipate, preventing them
from redshifting like matter always, which would cause a
“string loop problem” analogous to the monopole problem.
Second, backreaction from gravitational wave emission
may affect the shape of the loops, so that old loops are
different from ones which have been newly formed from
the long string network [2]. Finally, gravitational waves in
the form of a stochastic background or bursts due to cusps
on the string loop are the leading candidate for an
observable signal that would allow us to discover a string
network [3–9]. We will concentrate here on the effect of
backreaction on the loop shape. We work in units
where c ¼ 1.
Before we consider backreaction, a loop that is small

compared to the Hubble distance can be considered to
evolve in flat space. In that case, the evolution of the loop
can be written

xðt; σÞ ¼ 1

2
½aðvÞ þ bðuÞ�; ð1Þ

where v ¼ t − σ, u ¼ tþ σ, and a and b are functions
periodic in the loop length L whose tangent vectors obey
ja0j ¼ jb0j ¼ 1. Backreaction can be understood as slow
modification of the functions a and b, providing we are in
the regime whereGμ ≪ 1, where μ is the string tension and
linear mass density, and G is Newton’s constant.
Since ja0j ¼ jb0j ¼ 1, a0 and b0 can be considered paths

on the Kibble-Turok sphere of unit vectors [10–12]. In the

rest frame of the loop, these paths are closed and each has
its center of mass at the center of the sphere. If the string is
smooth, these paths will generically (though not always
[12]) intersect. Such a point is called a cusp. The string
doubles back on itself there and moves (formally) at the
speed of light. Cusps lead to emission of bursts of
gravitational waves, which may be detectable [3–6].
However, the reconnection of strings during their evo-

lution causes discontinuities in the paths of a0 and b0, and
thus sudden changes in the direction of the strings, called
kinks. Kinks allow a0 and b0 to jump over each other and
avoid forming a cusp, but lead to their own patterns of
gravitational wave emission [12].
Simulations show that loops just formed from the long

string network essentially never have cusps [2]. Instead
they have several large-angle kinks. But most loops which
exist at any given time have lost a very significant fraction
of their length to gravitational radiation and thus may have
very different shapes from those they had at formation. If
gravitational backreaction rounds off the kinks, then the
paths of a0 and b0 will cross, producing cusps. Generally
there will be two cusps per oscillation [2].
In certain systems, the effect of gravitational backreac-

tion is easy to understand. Consider, for example, a straight,
static string with small wiggles of various wavelengths. In
this case one can straightforwardly compute the gravita-
tional power from wiggles of some frequency ω and energy
density E interacting with other wiggles going the opposite
direction [13,14]. This power should come from a decrease
in the energy of the wiggles in question, and so one arrives
at the damping rate of these wiggles, dE=dt ∝ −Ecω,
where c is a constant depending on the opposite-direction
wiggles (as long as the wiggles going in the two directions
have similar wavelengths [14]). After some interval t, E
will decrease by e−tcω.
If this process were linear, one could argue that when

there is a superposition of waves of different frequencies,
the short waves are damped more rapidly, with the damping
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timescale in proportion to the wavelength. Then the fate of
any pattern of excitations on the string could be found by
Fourier analysis, and we would conclude that effect of
backreaction on the position of a string would be to
convolve it with a Lorentzian, because the Lorentzian is
the function whose Fourier transform declines exponen-
tially with frequency.
Indeed, this was the procedure used in Ref. [2] to

produce a toy model of the effects of backreaction.
Convolution rounds off kinks, so the result was that cusps
were generated, as described above. However, radiation is
not a linear process, and this model is qualitatively
incorrect, as we will describe below.
Gravitational backreaction on string loops was studied

numerically by Quashnock and Spergel [15]. However their
simulations were limited by the computer power available
at the time, and so the detailed fate of the kinks is not clear.
Reference [15] says that “the kink angles are opened,” but
the same results have been interpreted by other authors
(e.g., Ref. [1]) to show that the kinks are rounded off.
To determine whether rounding off, straightening out, or

some other model is correct, we will analyze the general
properties of backreaction. We will consider strings with
Gμ ≪ 1, so we can work in linearized gravity. Starting
from the Minkowski metric ηαβ, the perturbed metric due to
the string loop can be written gαβ ¼ ηαβ þ hαβ with

hαβðxÞ ¼ −16Gπ
Z

d4x0½Tαβðx0Þ

−ð1=2ÞηαβTγ
γðx0Þ�Drðx − x0Þ; ð2Þ

where Tαβðx0Þ is the stress-energy tensor of the string and
Dr is the retarded Green’s function.
The curvature of spacetime leads to a change in the

motion of the string, given by [15]

d2xλ

dudv
¼ −Γλ

αβ

dxα

du
dxβ

dv
; ð3Þ

where Γλ
αβ is the Christoffel symbol. Thus after some time,

the function a0ðvÞ ¼ 2dx=dv will change by the quantity
[15],

Δa0λ ¼ −2
Z

duΓλ
αβ

dxα

du
dxβ

dv
; ð4Þ

and similarly for b0ðuÞ.
How does hαβðxÞ depend on the observation point x?

Equation (2) is an integral over the intersection of the past
light cone of x with the world sheet of the string. If the
world sheet is smooth, moving x changes this intersection
in a smooth fashion, so hαβðxÞ changes smoothly. Kinks in
the world sheet are lightlike lines where the world sheet has
a slope discontinuity. Generically, the backward light cone
from x intersects such lines in isolated points. Moving x

moves the intersection points without changing their
nature, and thus hαβðxÞ is still smooth.
When the backward light cone crosses the point where

two kinks pass through each other, this no longer applies.
The two kinks divide the world sheet into four regions. The
backward light cone of x intersects three of these, and
moving x causes the intersection with one region to
gradually decrease to zero and then the intersection with
the fourth region to increase from zero. Thus there is a jump
in the first derivative of hαβðxÞ at such points. The
Christoffel symbol there has a discontinuity but remains
bounded.
Now consider the effect of Eq. (3) on the string very near

a kink. As we approach the kink, dx=du and dx=dv have
constant limits and Γλ

αβ is bounded. Thus the force which
changes the direction of the string approaches a constant as
we approach the kink tip, so the original direction is
perturbed in a uniform way. The perturbed string near
the kink may point in a different direction, but it remains
straight. Thus kinks are not rounded off. Rounding off
would require that after even a small number of oscillations,
the string very near the kink would be substantially
modified, which would be possible only if the force
diverged as one approached the kink, which is not the case.
As we cross over to the other side of the kink, Γλ

αβ has no
sudden change, but dx=du or dx=dv changes discontinu-
ously to produce a sharp kink. Thus the force on the other
side of the kink may be different. This means that the two
sides may be turned in different directions and so the angle
of the kink may change.
If the kinks were rounded off, the paths of a0 and b0

would become continuous, which would almost always
lead to cusps. Opening the kink angle makes cusps more
likely, as the curvature introduced by backreaction spreads
out the unit vectors on the Kibble-Turok sphere away from
their discontinuous jumps, and so their paths may overlap.
But it is still possible for a0 to jump over b0, or vice versa, so
cusps are by no means certain.
One might argue that cusps become inevitable once

backreaction completely straightens kinks, but this is not
guaranteed to happen. Consider a kink due to a disconti-
nuity in A0 with a very shallow angle ζ ≪ 1. This kink will
change its angle in a way that depends on the difference in
force across the kink. There will be a factor Gμ from
hαβðxÞ, a term like 1=L due to the derivatives of hαβðxÞ
found in the Christoffel symbol, and a dimensionless
prefactor which depends on the contraction of null vectors
with the Christoffel symbol. Under the small-angle
approximation, the difference in null vectors will be linear
in ζ, and so altogether we have

dζ
dt

¼ −
ΓζGμ
L

ζ; ð5Þ

with Γζ a constant.
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The total radiation power of a loop is usually written
ΓGμ2, with Γ ∼ 50 depending on the loop shape. As a
result, the length of the loop decreases as
LðtÞ ¼ L0 − ΓGμt. If we put this into Eq. (5) and solve
the resulting differential equation for initial kink angle ζ0,
we find

ζðtÞ ¼
�
1 −

ΓGμt
L0

�
Γζ=Γ

ζ0; ð6Þ

so the kink angle depends on the fraction of the loop
remaining raised to some power. When Γζ ∼ Γ, small kink
angles are opened at about the same rate as the loop
dissipates. If a kink was preventing a cusp, such Γζ will lead
to the cusp appearing on average when the loop has half
evaporated. Larger Γζ causes cusps to appear sooner, and
Γζ ≪ Γ means that small kinks persist very late in the
lifetime of the loop, greatly reducing the frequency of
cusps. Unfortunately, we do not know at this point the
typical magnitude of Γζ.
We have therefore shown from general arguments two

important features of how backreaction affects loops. First,
kinks are opened up rather than being smoothed out, and so
the appearance of cusps on a loop will be delayed. Second,
very small kinks may persist all the way to the end of a
loop’s life. Both of these results serve to change the
distribution of loops with cusps, and therefore the signals
we expect from loops.
To demonstrate the processes we describe above, we

consider the rectangular Garfinkle-Vachaspati loops
[12,16], which are simple enough that the first-order
backreaction effect can be understood analytically [17].
In such loops, the function a0 takes on two values only. In
the rest frame, these two vectors are the negatives of each
other. The function b0 is similar, so such a loop is specified
up to overall length and spatial orientation by one number:
the angle θ between the direction of one of the a0 and one of
the b0 (and thus θ and π − θ specify the same loop). The
Kibble-Turok sphere for such a loop is shown in Fig. 1. The

loop goes through a succession of rectangular shapes, with
the limiting case of the rectangles being double lines, as
shown in Fig. 2. (Of course such intersections would
destroy a real string, but here we are considering an
infinitely thin string without self-interaction).
What changes could backreaction produce in the shape

of such a loop? The loop lies in a plane, and reflection
around this plane guarantees that backreaction must leave
the loop planar. The functions a and b have angle-π bends,
and these could be reduced to less sharp bends with curved
segments in between. This corresponds to spreading out
each point of a0 and b0 in Fig. 1, so that each curve moves
slowly around the circle for a while and then jumps by an
angle less than π.
We analyzed these loops [17] using the formalism of

Eqs. (2) and (3). For general θ, we found that the kinks in a
and b are opened out as shown by the general argument
above. Figure 3 shows an example.
But in the case where θ ¼ π=2, there is an additional

symmetry. The two directions of a0 lie equally at angle
π=2 from the direction of b0, and vice versa. Without
any calculation, one can see there is no way to decide
whether a0 (or b0) should be deformed to travel clockwise
or counterclockwise around the circle, and so it must
remain unchanged. Indeed, explicit calculation [17] of
this case shows that the loop shrinks without chang-
ing shape.
Another example where kinks are not smoothed is the

Allen-Casper-Ottewill (ACO) loop [18] studied extensively
by Anderson [19–21]. In this loop a is a circle, while b is a
line perpendicular to the plane of a. The loop is made of
two segments of a helix, one right handed and one left
handed, and rotates rigidly. In this case a cannot be
smoothed because it is as smooth as possible already,
and b cannot be smoothed because of rotational invariance:
any perturbation to bwould require singling out a preferred
direction. Thus backreaction cannot change the shape of
this loop [19,20].
The ACO loop can be extended to the case where a

wraps around the circle more than once [18], in which case

a’

a’ b’

b’

θ
π−θ

FIG. 1. The Kibble-Turok unit sphere for a rectangular loop.
Since the loop is planar, the sphere is just a circle, and each of a0
and b0 occupies 2 points.

θ

FIG. 2. A loop with straight segments and four kinks goes
through a series of rectangular shapes, as shown here, including
two double lines, shown bold. The angle between the directions
of a0 and b0 is θ.
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the loop is self-intersecting. One can also have b go back
and forth several times along the same line segment. All
such loops radiate without change of shape.
In summary we find that backreaction does not round off

kinks, but may change their angles, presumably straight-
ening them out and moving some of the bending that was
formerly at the kink into the segments between kinks. Even
this process does not always occur; in some cases sym-
metries prevent it and the loop shrinks due to evaporation,
without changing its shape. Both processes can be observed
in the rectangular Garfinkle-Vachaspati loops, where the
first-order effect of backreaction can be calculated analyti-
cally [17]. But only the very simplest loops are amenable to
analytic calculation, and even then only to first order,
except when the loop shape remains the same. Further
progress will require numerical simulations in the style of
Ref. [15], in particular to determine what fraction of loops
develop cusps and at what point in their evolution, which is
vital to determine the spectrum of gravitational waves
produced by cosmic string loops. This will be the subject of
future work.
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