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We show that placing a quantum system in contact with an environment can enhance non-Fermi-liquid
correlations, rather than destroy quantum effects, as is typical. The system consists of two quantum dots in
series with two leads; the highly resistive leads couple charge flow through the dots to the electromagnetic
environment, the source of quantum noise. While the charge transport inhibits a quantum phase transition,
the quantum noise reduces charge transport and restores the transition. We find a non-Fermi-liquid
intermediate fixed point for all strengths of the noise. For strong noise, it is similar to the intermediate fixed
point of the two-impurity Kondo model.
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Quantum fluctuations and coherence are key distinguish-
ing ingredients in quantum matter. Two phenomena to
which they give rise, for instance, are quantum phase
transitions [1,2], changes in the ground state of a system
driven by its quantum fluctuations, and quantum noise
[3–5], the effect on the system of quantum fluctuations
in its environment, for no system is truly isolated.
Understanding the intersection of these two topics—the
effects of quantum noise on quantum phase transitions—is
important for understanding quantum matter. It is natural
to suppose that decoherence produced by the noise will
suppress quantum effects, and in particular, inhibit or
destroy a quantum critical state. Indeed, a variety of
calculations demonstrate this in both equilibrium [3,4,
6–12] and nonequilibrium [13–17] contexts. There are also
a few known cases that do not follow this rule [18–20].
Here, we present a striking counterexample to the notion
that environmental noise necessarily harms quantum many-
body effects: in the system we study, the addition of
(equilibrium) quantum noise stabilizes a non-Fermi liquid
quantum critical state.
We discuss the phase diagram of two quantum dots

connected to two leads in the presence of environmental
quantum noise. The noiseless model has a quantum phase
transition that is transformed into a crossover by charge
transport across the double dot. We show that quantum
fluctuations of the field associated with the source and drain
voltage counteract this charge transport. The competition
between these two processes restores the delicate balance
of the quantum critical state. The result is that the quantum
phase transition is rescued from the undesired crossover for
any strength of the noise.
Our double quantum dot setup is shown schematically in

Fig. 1: two small dots are in series between two leads,
labeled L (left) or R (right). The leads are resistive, thereby
coupling the electrons to an Ohmic electromagnetic envi-
ronment. Experimentally, small double dots have been

studied in several materials [21–25], and the effect of
the environment on transport in simpler systems has been
recently studied in detail [26–29], including transport
through a single quantum dot [27,28]. Thus, all the
necessary ingredients for an experimental study of our
system are available.
Model for dots and leads.—The model has three parts:

leads, dots, and an electromagnetic environment. Following
standard procedures, we linearize the spectrum of each
lead, notice that a one-dimensional subset of electrons
couples to each dot, and represent it using chiral fermions
by analytic continuation with open boundary conditions
[30]. The resulting lead Hamiltonian is the sum of four free
Dirac fermions,

H0
leads ¼

X

α;σ

Z
∞

−∞
dxψ†

α;σðxÞi∂xψα;σðxÞ; ð1Þ

where α and σ are the lead and spin labels and both the
Fermi velocity and ℏ are set to unity.
For the dots, we consider the Coulomb blockade

regime in which charge fluctuations are suppressed and
the electron number is odd [31]. The single-level Anderson
model is suitable for each dot as the spacing between levels
in the carbon nanotube dots is large [27,28]. Each dot then

has a low-energy spin-1
2
degree of freedom ~Sα. Projecting

onto this low-energy subspace via a second-order

FIG. 1. Schematic of the system: two quantum dots coupled to
left and right leads. JL;R and K refer to the Kondo and exchange
coupling strengths, respectively. VLR is the strength of direct
charge transport between the leads. Dissipative modes in the leads
are represented by wiggly arrows.
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Schrieffer-Wolff transformation produces two Kondo-like
terms with couplings JL;R and a spin-spin antiferromag-
netic interaction with coupling K,

Hdots ¼ JL~sLð0Þ · ~SL þ JR~sRð0Þ · ~SR þ K~SL · ~SR; ð2Þ
where ~sα ¼ ψ†

αð0Þ~σψαð0Þ is the spin density in the lead at the
point connected to the dot. Though none of our results depend
on left-right symmetry, we take JL ¼ JR for simplicity.
Charge transfer between the two leads is key to the

physics of this system [32–37]. The effective hopping
between the leads that arises from the third-order
Schrieffer-Wolff transformation of the original Anderson
model must be added [37],

HLR¼VLR½ðψ†
L↑ψR↑þψ†

R↓ψL↓ÞS−LSþR
þðψ†

L↑ψR↑þψ†
L↓ψR↓ÞSzLSzR

þðψ†
L↑ψR↓−ψ†

R↑ψL↓ÞðSzLS−R−S−LS
z
RÞ�þH:c:; ð3Þ

where x ¼ 0 for the lead operators [38]. This form is
obtained because moving an electron across the dots
necessarily involves the dot spins. Much of the physics
added by (3) is obtained from a simpler direct hopping,
ĤLR ¼ V̂LRψ

†
Lσð0ÞψRσð0Þ þ H:c: [37,42]. We therefore

simplify the discussion by using ĤLR rather than HLR
when possible [38].
The final ingredient in our system is the “quantum noise.”

Quantum fluctuations of the source and drain voltage require
a quantum description of the tunneling junction [5,31]. The
standard procedure is to introduce junction charge and phase
fluctuation operators that are conjugate to each other and
(bilinearly) coupled to modes of the Ohmic environment
with resistance R. Treating the latter as a collection of
harmonic oscillators with the desired impedance, we write
the environment as a free bosonic field, H0

φ ¼ R ðdx=4πÞ
ð∂xφÞ2, which is excited in a tunneling event through the

charge-shift operator ei
ffiffiffiffi
2r

p
φð0Þ [5]. Such a shift operator is

added to every term in HLR according to

ψ†
LσψRσ → ei

ffiffiffiffi
2r

p
φð0Þψ†

LσψRσ; ð4Þ
where r ¼ Re2=h is the dimensionless resistance. The
environment does not modify the second-order exchange
couplings, Eq. (2), because those virtual processes occur on
the very short time scale of the inverse charging energy [43],
typically smaller than the time scale of the environment. This
model of noisy tunneling has been used previously in work
on a resonant level [44,45], including in our own work
[27,28,46,47], and for a quantum dot in the Kondo regime
[43]. In summary, the starting point of our discussion is the
Hamiltonian

H ¼ H0
leads þH0

φ þHdots þHLRðrÞ: ð5Þ

Quantum phase transition or crossover?—First, we
bosonize the chiral fermions describing the leads,
Eq. (1), thereby introducing chiral bosonic fields ϕα;σ

[30,36,38]. One can then see that the ultraviolet fixed
point, described by H0

leads þH0
φ, is unstable. There are two

important energy scales connected to this instability: the
Kondo temperature TK , associated with the screening of
each dot by its own lead, and the “crossover temperature,”
T� < TK [36,42].
To explain T�, we start by considering VLR ¼ 0, yielding

the two-impurity Kondo model. For T < TK, there are two
Fermi-liquid phases with a critical coupling that separates
them [32,48], denoted by Kc. (i) For K > Kc, the two dots
become maximally entangled in a singlet state—the local-
singlet phase controlled by a fixed point, denoted LSFP,
with a scattering phase shift of 0. (ii) For K < Kc, each dot
becomes maximally entangled with its respective lead,
forming two decoupled Kondo singlets—the Kondo phase
controlled by a fixed point, denoted KFP, phase shift of
π=2. The fact that the phase shifts are different implies the
existence of an intermediate (unstable) fixed point [48,49],
which we call IFP1 (see Fig. 2).
Interlead tunneling, VLR ≠ 0, changes the behavior dra-

matically. In the absence of dissipation, r ¼ 0, it is known that
HLR destabilizes IFP1 [34–37,50], becoming effective below
a scale T�. The low-energy physics is described by Fermi-
liquid Hamiltonians, with scattering phase shift varying from
δ ¼ 0 to π=2, depending on the initial values of the couplings
[33,35,36,42]. The finite temperature conductance is
G ¼ G0 sinð2δÞ½1 − κðT=T�Þ2�, where G0 ¼ 2e2=h and κ
is nonuniversal. Therefore, for T < T�, the quantum phase
transition of the two-impurity Kondo model is transformed
into a crossover between theKondo and local-singlet regimes.
Quantum noise effects.—Close to the KFP and LSFP, the

tunneling Hamiltonian in the absence of noise HLR is a
marginal operator [35,36,42]: without noise, any bilinear

FIG. 2. Stability diagram for different noise strengths r, and the
temperature dependence of the conductance at each fixed point.
The KFP and LSFP are stable for any nonzero r, while the nature
of the IFP changes as a function of r. For r < 1=2, the
intermediate state is controlled by IFP2—the fixed point that
evolves from one of the r ¼ 0 Fermi-liquid fixed points.
In contrast, for r > 1=2, IFP1—which evolves from the two-
impurity-Kondo IFP—is relevant. For r ¼ 1=2, a line of fixed
points connects IFP1 to IFP2.
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operator that transfers charge between the leads is marginal
at these two fixed points. A key effect of the noise is that the
scaling dimension of such an operator increases, making it
irrelevant. In the tunneling operator HLR, the increase is
caused by the exponential charge-shift operator introduced
in Eq. (4). The line of Fermi-liquid fixed points existing at
r ¼ 0 is then destroyed. The conductance around the KFP
and LSFP follows from perturbation theory in the tunnel-
ing, leading to GðTÞ ∼ T2r [5,51].
The newfound stability of the Kondo and local-singlet

fixed points with respect to tunneling demands once again
the existence of an intermediate fixed point. We denote this
“dissipative intermediate fixed point” by IFP2, as shown
in Fig. 2.
IFP2 occurs for the same value of K as IFP1, namely

K ¼ Kc, as we now show. It is known that the effect of a
resistive environment on a bilinear tunneling operator is
connected to the partition noise produced by the tunneling
[52,53]: when there is no partition noise, the environment is
not excited by the current and so has no effect. This is the
case at K ¼ Kc: the phase shift is δ ¼ π=4, so the zero-
temperature conductance is G ¼ 2e2=h, and the trans-
mission is unity. Thus, there is no partition noise: from
the line of r ¼ 0 Fermi-liquid fixed points, this fixed point
survives at nonzero r and is, in fact, IFP2. We now turn to
characterizing both IFP’s in detail.
Effective Hamiltonian at the intermediate fixed points.—

In order to derive an effective Hamiltonian at the critical
coupling, K ¼ Kc, we follow the dissipationless discussion
of J. Gan in Ref. [54]. First, we define new bosonic fields,

ϕc=s ¼ ðϕL↑ � ϕL↓ þ ϕR↑ � ϕR↓Þ=2;
ϕcf=sf ¼ ðϕL↑ � ϕL↓ − ϕR↑ ∓ ϕR↓Þ=2: ð6Þ

Physically, ϕc (ϕs) represents the total charge (spin) in the
leads, and ϕcf (ϕsf) represents the corresponding differ-
ence between the left and right leads. Next, one applies the
unitary rotation U ¼ e−iðS

z
1
þSz

2
Þϕsð0Þ, thus dressing the spin

states and making the exchange couplings anisotropic [38].
A key aspect of the physics at the IFP’s is the degeneracy in
the dots between the two dressed spin states, j0i≡ ðj↑↑i þ
j↓↓iÞ= ffiffiffi

2
p

and j1i≡ ðj↑↓i − j↓↑iÞ= ffiffiffi
2

p
, that leads to an

effective Kondo problem with Kondo temperature ~TK [54].
It is convenient to introduce Majorana operators a and b for
this two-dimensional Hilbert space (the string from the
Jordan-Wigner transformation is incorporated into the lead
operators). The end result [54] is an effective Hamiltonian
for K ¼ Kc [38],

HK¼Kc
¼

X

β¼fc;s;sf;cf;φg
H0

β þ 2i ~J
Fsfffiffiffiffiffiffi
πα

p sin ½ϕsfð0Þ�a

þ 2 ~VLR
Fcfffiffiffiffiffiffi
πα

p cos ½ϕcfð0Þ þ
ffiffiffiffiffi
2r

p
φð0Þ�b; ð7Þ

where Fsf; Fcf are Klein factors, α is of order the inverse
cutoff, ~J is the renormalized Kondo coupling, and ~VLR is
the renormalized charge tunneling strength. Explicit
expressions for ~J and ~VLR are given in the Supplemental
Material [38].
The bosonic fields can be further untangled by perform-

ing a rotation that combines the field representing
charge transfer between the leads ϕcf with the environ-

mental noise φ: ~ϕcf≡ðϕcfþ
ffiffiffiffiffi
2r

p
φÞ= ffiffiffiffiffiffiffiffiffiffiffiffi

1þ2r
p

and ~φ≡
ð ffiffiffiffiffi

2r
p

ϕcf − φÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2r

p
. The symmetries of the model

are explicitly shown by defining six Majorana fermionic
fields [35,36,49] with Ramond boundary conditions,

χ1;2β ð0þÞ¼ χ1;2β ð0−Þ: χð1Þβ¼fc;s;sfgðxÞ ¼ ðFβ=
ffiffiffiffiffiffi
πα

p Þ sin ½ϕβðxÞ�
and χð2Þβ¼fc;s;sfgðxÞ ¼ ðFβ=

ffiffiffiffiffiffi
πα

p Þ cos ½ϕβðxÞ�. Because the

boundary interaction 2i ~Jχð1Þsf ð0Þa has scaling dimension

1=2 (a is an impurity operator), ~J flows to strong coupling

[35,36]. χð1Þsf then incorporates a and can be expressed as a
simple change of boundary condition from Ramond to

Neveu-Schwarz: χð1Þsf ð0þÞ ¼ −χð1Þsf ð0−Þ [49].
The effective IFP Hamiltonian can thus bewritten in terms

of six free Majorana fields—five with Ramond and one with
Neveu-Schwarz boundary condition—one free bosonic field
( ~φ), and a boundary sine-Gordon model for ~ϕcf:

HIFP ¼
X5

j¼1

Z
dx
2
χjðxÞi∂xχjðxÞ þ

Z
dx
2
χð1Þsf ðxÞi∂xχ

ð1Þ
sf ðxÞ

þ
Z

dx
4π

½∂x ~φðxÞ�2 þ
Z

dx
4π

½∂x
~ϕcfðxÞ�2

þ 2i ~VLR
Fcfffiffiffiffiffiffi
πα

p cos ½ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2r

p
~ϕcfð0Þ�b: ð8Þ

This Hamiltonian has an inherent SOð5Þ × Uð1Þ symmetry
from the five Majorana fields and the dressed dissipation
field ~φ. With regard to the dot degrees of freedom, while
Majorana mode a is effectively incorporated into the
leads, mode b is coupled to the charge transport. For the
two-impurity Kondo model, ~VLR ¼ 0 and b is a decoupled
Majorana zero mode.
Dependence of IFP on dissipation.—The boundary sine-

Gordon model, which is the last element in Eq. (8), is well
known to have a quantum phase transition [30,55,56] as
the parameter in the boundary term varies, in our case r.
The simplest description of this transition is via the scaling
equation, ðd ~VLR=dlÞ ¼ ð1

2
− rÞ ~VLR, which results from

noticing that the scaling dimension of the operator
cos½ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2r
p

~ϕcfð0Þ� is ð1þ 2rÞ=2 [30]. There are three
distinct scaling behaviors depending on the value of r.
For weak dissipation, r < 1=2, ~VLR grows. As in the

r ¼ 0 case [35,36], the cosine gets pinned at a particular
value. The fixed point Hamiltonian is obtained by changing
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the boundary condition on ~ϕcf at x ¼ 0 from Dirichlet [for
open boundary conditions on the fermionic fields in
Eq. (1)] to Neumann [56]. IFP2 is the corresponding fixed
point; it develops from the δ ¼ π=4 Fermi-liquid fixed
point [35] of the dissipationless case.
The leading irrelevant operator at IFP2 is, because of the

change in boundary condition, simply the dual of the
relevant operator at IFP1 that causes ~VLR to grow [4,30].
Its scaling dimension is 2=ð1þ 2rÞ—the inverse of that of
the cosine operator above. The temperature dependence
of the conductance is therefore expected to be [38]

G ∼G0½1 − γT2ð1−2rÞ=ð1þ2rÞ� ðat IFP2Þ; ð9Þ
with γ a nonuniversal constant. We see that modification of
the boundary interaction by dissipation introduces a
Luttinger-liquidlike character. In addition to the conduct-
ance, the non-Fermi liquid nature of this fixed point is also
manifest in its residual boundary entropy, which can be
shown to be ln gIFP2 ¼ 1

4
ln ð1þ 2rÞ [38].

The breakdown of scaling (i.e., when ~VLR becomes of
order one) defines the crossover temperature, TLR

noise ≈
TKð ~V0

LRÞ2=ð1−2rÞ, in terms of the initial value of tunneling
from left to right ~V0

LR [57]. For higher temperatures,
TLR
noise < T < TK , the physics is controlled by the ~VLR ¼

0 fixed point IFP1 as ~VLR is initially small. For lower
temperatures, T < TLR

noise, the physics is controlled by IFP2.
To study the effect of deviations of the antiferromagnetic

coupling K from Kc, we follow the discussion in
Refs. [36,42] and define the crossover temperature
TδK ¼ aðK − KcÞ2=TK , where a is a dimensionless con-
stant. If TLR

noise < TδK , the low-energy physics will be
governed by the KFP or LSFP. However, for
TδK < TLR

noise, an experiment would initially observe a rise
in the conductance due to proximity to IFP2 before the
crossover to the Kondo or local-singlet physics took over
(for which G → 0). Using the remarkable tunability of
quantum dots, access to the regime TδK ≪ TLR

noise is pos-
sible, in which case the power law approach of the
conductance to the quantum limit G0, given above, should
be observable. Indeed, a strong-coupling fixed point with
similar properties has recently been studied experimentally
in a single dissipative quantum dot [27,28].
In sharp contrast, for strong dissipation, r > 1=2, ~VLR

shrinks, and the properties of the system are controlled by
IFP1. The boundary condition on the field ~ϕcf remains the
Dirichlet condition. The scaling dimension of the boundary
sine-Gordon term implies that the conductance decreases at
low temperature according to [38]

G ∼ T2r−1 ðat IFP1Þ: ð10Þ

The non-Fermi liquid nature of this fixed point is
further shown by the residual boundary entropy,

ln gIFP1 ¼ 1
4
ln½4=ð1þ 2rÞ� [38], and by the decoupling of

the b Majorana in the dots as the last term in Eq. (8) flows
to zero.
IFP1 evolves from the intermediate fixed point of the two-

impurity Kondo model (r ¼ 0). Formally, however, IFP1 is a
distinct fixed point—the residual boundary entropy, for
instance, depends on r. Nevertheless, for reasonable values
of r ∼ 1=2, this system can emulate the physics of the two-
impurity Kondo model: the SOð7Þ symmetry manifest in the
Majorana fields [36,49], for instance, is restored asymptoti-
cally. Any observable not directly related to charge transfer
between the leads, such as the magnetic susceptibility, will
have the same behavior in the two models.
The crossover temperature to the KFP or LSFP TδK is

given by the same expression as in the weak noise case.
Thus, for TδK < T < TK, the physics of IFP1, bearing
strong resemblance to that of the two-impurity Kondo
model, will be experimentally accessible.
Finally, the borderline r ¼ 1=2 case is particularly

interesting. The cosine in Eq. (8) is exactly marginal [58],
corresponding to an SU(2) chiral symmetry. Hence, we can
replace the cosine by the Abelian chiral current ∂x

~ϕcf [56].
The model becomes quadratic and the conductance can be
calculated exactly [30,51]—G depends on the initial value
~V0
LR and so is not universal. The exactly marginal operator

creates a line of fixed points connecting IFP1 to IFP2, all with
residual boundary entropy 1

4
ln 2. The line is unstable to

deviations from the critical coupling Kc; as in the previous
cases, T < TδK leads to flow toward the KFP or LSFP. Even
at Kc, corrections to the effective Hamiltonian (8) will
presumably cause flow away from this line at the lowest
temperatures (which we have not analyzed); however,
because their initial strength is very small, the crossover
temperature T� to see these effects will be very low. Thus, in
a wide range of temperatures, T� < T < TK , the properties
of the line of fixed points could be seen experimentally,
varying V0

LR to move among them.
Conclusions.—We have presented an example in which

the introduction of a quantum environment reveals a
quantum phase transition previously hidden under a cross-
over: the quantum noise has rescued the quantum phase
transition. There are two quantum critical points (Fig. 2):
one dominant for weak dissipation (IFP2, r < 1=2) and the
other at strong dissipation (IFP1, r > 1=2)—this latter fixed
point is similar to that of the two-impurity Kondo model.
A broader view is obtained by connecting to the idea of

“quantum frustration of decoherence” of a qubit [59,60]: a
quantum system acted upon by two processes that are at
cross purposes may retain more coherence than if acted
upon by just one. The quantum system to be protected here
is the non-Fermi-liquid quantum critical state, delicately
balanced between the KFP and LSFP, a striking signature
of which is the decoupled, and so completely coherent,
Majorana mode. Charge transfer between the electron
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reservoirs associated with the leads is the first process
acting on the system, one that completely destroys the
delicate quantum state and the coherence of the Majorana
mode. Adding the quantum noise produced by the resistive
EM environment impedes the deleterious effect of the first
process, rendering the coherent Majorana zero mode again
manifest at IFP1. Thus, the quantum coherence of the
delicate many-body state survives due to the “quantum
frustration” of these two processes.
This quantum critical state is highly nontrivial and clearly

unstable toward the KFP and LSFP, but it has experimental
consequences in a wide temperature range. We emphasize
that measurements of the conductance near IFP1 and IFP2
are experimentally feasible at this time—similar amounts of
tuning have been used successfully, for instance, in recent
experiments [27,28]. An experimental study along these
lines would directly contradict the general notion that more
noise leads inevitably to less quantum many-body behavior.
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