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Organisms shape their own environment, which in turn affects their survival. This feedback becomes
especially important for communities containing a large number of species; however, few existing
approaches allow studying this regime, except in simulations. Here, we use methods of statistical physics to
analytically solve a classic ecological model of resource competition introduced byMacArthur in 1969. We
show that the nonintuitive phenomenology of highly diverse ecosystems includes a phase where the
environment constructed by the community becomes fully decoupled from the outside world.
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Understanding the diversity of life-forms on our planet is
an age-old question. Recent technological advances have
uncovered that most habitats harbor hundreds of coexisting
“species” (most of which are microbial [1–3]), and the
problem of understanding such communities is currently at
the forefront of the medical and environmental sciences [4–
6]. One of the key obstacles arises from the fact that
ecological and evolutionary time scales are generally not
separable, giving rise to a coupled “ecoevolutionary
dynamics” [7–9]. The fitness of an organism depends on
its environment, but this environment is not fixed: it
includes all other organisms in the community, is shaped
by their activity, and changes on an ecological time scale.
How to understand this feedback has long been recognized
as an important question of community ecology [10].
A convenient example of such ecological feedback

appears in models of resource competition [11]. The
survival of an organism is determined by the availability
of resources in its immediate environment. In quantitative
theories of evolution (population genetics), we typically
think of this environment as being fixed externally, but in
an ecological setting, an experimentalist can only set the
conditions faced by the community as a whole, e.g., the
overall influx of resources. The immediate environment of
an individual is affected by the activity of all other
organisms and is not under our direct control. For example,
consider increasing the overall influx of maltose (a sugar)
to a multispecies bacterial culture. This could lead to an
increase of maltose in the medium, opening the community
to invasion by a species that grows well on this sugar.
Alternatively, this could enable existing maltose-
consuming species to expand in population, driving malt-
ose availability back to the same level—or perhaps even
depleting it further. The relation between the resources
supplied to the community and the immediate environment

seen by individual organisms is nontrivial. Our control
extends on the former, but organism survival and, therefore,
community structure are determined by the latter.
The mechanisms by which organisms shape their envi-

ronment (niche construction theory [12]) have been the
subject of much research, both at equilibrium (e.g., re-
source competition models [11]) and out of equilibrium
(e.g., in the study of ecological successions [13]). Perhaps
the most progress was achieved regarding the problem of
resource competition in a well-mixed community at equi-
librium, introduced 50 years ago by MacArthur [14].
However, the geometric approach developed by Tilman
in his classic work [15] allowed him to analyze only the
cases with N ¼ 1 and N ¼ 2 resources. It is not clear to
what extent the intuition derived from low-dimensional
models applies to the high-dimensional case. Recently, a
simulation-based study of a modestly larger number of
resources (N ¼ 10) exhibited a surprising effect whereby a
community interacting with another community would
exhibit an effective “cohesion” even in the absence of
any cooperative interactions between its members, purely
as a consequence of environmental feedback [16]. The
number of metabolites at play in a complex microbial
community in nature is even larger, of the order N ≃ 100
[17,18]. It is an intriguing possibility that the phenomenol-
ogy of high-diversity communities could contain qualita-
tively novel, nonintuitive regimes. However, few existing
approaches allow studying niche construction or ecoevolu-
tionary dynamics for a large number of interacting species,
except in simulations.
The booming field of microbiome research is in dire

need of a theoretical framework capable of describing
complex communities, and there is a growing awareness
that such a framework could emerge from the statistical
physics of disordered systems [19–21]. In this Letter, we
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show that MacArthur’s classic model of resource competi-
tion can be solved analytically in the limit of large N. We
observe a phase transition between two qualitatively dis-
tinct regimes. In one regime, changes of external conditions
propagate to the immediate environment experienced by
organisms, as expected. However, in the other regime, the
immediate environment of individuals becomes a collective
property of the community, unaffected by the outside
world. This regime, which is specific to high diversity,
documents the emergence of a collective behavior as a
consequence of large dimensionality.
In defining our model, we follow Ref. [16] but allow for

more generality. Consider a multispecies community in a
well-mixed habitat where a single limiting elementX exists
in N forms (“resources” i ∈ f1…Ng). For example, this
could be carbon-limited growth of bacteria in a medium
supplied with N sugars. Let nμ denote the population size
of a species μ ∈ f1;…;Sg. Briefly, the availability hi of
each resource i in the immediate environment of individ-
uals will determine the dynamics of nμ. The changes in
species abundance will translate into changes in the total
demand for resources, denoted Ti. This total demand, in
turn, will determine the resource availability hi. This
feedback loop is the focus of our analysis.
A species is characterized by its requirement χμ for the

limiting element X , and the “metabolic strategy” fσμig it
employs to try to meet this requirement. We think of σμi as
the investment of species μ into harvesting resource i (e.g.,
the expression level of the corresponding metabolic path-
way). Specifically, for a given resource availability fhig,
the population growth rate of species μ is determined by the
resource surplus Δμ experienced by its individuals:

dnμ
dt

∝ nμΔμ; with Δμ ¼
X
i

σμihi − χμ: ð1Þ

The first term is the total harvest of X from all sources, and
the second is the requirement an individual must meet to
survive. The proportionality coefficient is not important
since we will only be concerned with the equilibrium state
where ðdnμ=dtÞ ¼ 0.
Species abundances nμ determine the total resource

demand Ti ≡P
μnμσμi. This demand shapes the resource

availability hi. In the simplest model [16], organisms could
be sharing a fixed total influx of resource Ri∶ hiðTiÞ ¼
Ri=Ti. In his original formulation, MacArthur considered a
more complex scenario of dynamical resourceswith renewal
rate ri andmaximal availabilityKi; this would correspond to
setting hiðTiÞ ¼ Kið1 − Ti=riÞ; see Eq. (3) in Ref. [14]. In
the interest of generality, here we will say only that the
availability of resource i is a decreasing function of this total
demand, hi ¼ HiðTiÞ, and allow the functionsHi to remain
arbitrary, and possibly different for each resource.
This model admits a convenient geometric formulation,

where we can think of the metabolic strategies fσμig as S
vectors in the N-dimensional space of resource availability.

Each hyperplane ~h · ~σμ ¼ χμ separates this space into two
regions [Fig. 1(a)]. Above this hyperplane, a positive

resource surplus allows species μ to multiply. Below this
hyperplane (the shaded region), resources are insufficient to
support species μ. The intersection of such regions over all
competing strategies f~σμ; χμg defines the “unsustainable
region” Ω:

Ω ¼ ⋂
S

μ¼1

f~hj~h · ~σμ < χμg: ð2Þ

If resource availability ~h is inside Ω, no species can harvest
enough resources to sustain its population. Outside Ω, at
least one species can increase its abundance. Therefore, the
equilibrium state can only be located at the boundary of Ω,
which we denote ∂Ω. The dynamics (1) possesses a
Lyapunov function, which is convex and bounded from
above, similar to the classic model of MacArthur—of
which this is a generalization; see the Supplemental
Material (SM) [22]. As a result, the equilibrium state
always exists, is unique and stable, and can be found by
solving a convex optimization problem over the region ∂Ω.
At this equilibrium, each species either is extinct and
cannot invade (nμ ¼ 0, Δμ < 0) or is present and its
resource balance is met (nμ > 0, Δμ ¼ 0).
Figure 1(b) shows an example at N ¼ 2. Here, a

community of two specialists, ~σ1¼f1;0g and ~σ2¼f0;1g,
both with cost χ0, is exposed to a mixed strategy
~σ12 ¼ fx; 1 − xg, with a cost slightly below χ0. The species
~σ12 will be able to invade and, depending on resource
supply, may coexist with one of the specialists (but not
both). The equilibrium will harbor one or two species,
corresponding to the equilibrium ~h being located either at
an edge or at a vertex of ∂Ω.
The resource depletion rules Hi describe the external

conditions: how much of each resource is supplied to the

community as a whole. In contrast, ~h describes the avail-
ability of resources in the immediate environment of indi-
viduals, which ultimately dictates which species survive.
Any set of competing strategies f~σμ; χμg defines a unique
community equilibrium and thus implements a mapping

from external conditions into the actual environment ~h. Our
aim is to characterize the properties of this mapping.

FIG. 1. The geometry of resource competition at N ¼ 2. (a) If

resource availability ~h lies above the line ~h · ~σμ ¼ χμ, the species
μ will multiply, depleting resources (see the arrow). (b) Competi-
tion between S ¼ 3 species; metabolic strategies are indicated by
arrows (two specialists and one mixed strategy). The equilibrium
~h is always located at the boundary (highlighted) of the
unsustainable region Ω; one or two species may coexist.
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The geometric intuition described above was first devel-
oped by Tilman [15], who exhaustively analyzed the cases
N ¼ 1 and N ¼ 2. In higher dimensions, however, the
enumeration of coexistence regimes for a given set of
strategies, as in Fig. 1(b), quickly becomes a combinato-
rially difficult problem. In this Letter, we therefore adopt
the statistical physics approach and characterize the
expected properties of a typical community where the
competing strategies are drawn out of some ensemble.
Specifically, for each species μ, we first pick its strategy

as a random binary vector where each component σμi is 1
with probability p, and 0 otherwise. The parameter p
allows us to specify the location of a typical competitor on
the specialist-generalist axis. We then draw a random cost
χμ ¼ ðPiσμiÞ þ ϵxμ, where ϵ is a parameter (the cost
scatter, assumed small), and xμ is a Gaussian random
variable of zero mean and unit variance. We set the total
number of species to S ≡ αN.
The key simplification that makes the problem tractable

analytically is the independence of ~σμ and xμ: the strategy
and its cost are effectively uncorrelated. This assumption is
strong, but far from unreasonable. First, it remains a good
approximation even if a more complex cost model is
considered (see Sec. 6 and Fig. S3 of the SM [22]), similar
to the random energymodel being a good approximation for
low-lying states in other contexts, e.g., for the integer
partitioning problem [23,24]. Second, the species compet-
ing for the same resources in real communities differ in
evolutionary history, lifestyle, and physiology.Modeling the
cumulative effect of these differences as a random contri-
bution to the species’ likelihood to succeed is arguably a
better null model than claiming that the single factor we
explicitly consider (the species’metabolic preference) plays
the dominant role in determining its intrinsic performance.
Note that setting hi ¼ 1 satisfies the resource balance of

all species within a quantity of order ϵ, so this cost model
ensures that neither specialists nor generalists have an
obvious advantage [16]. To characterize the fluctuations of
resource availability 1 − hi, we introduce

m ¼
X
i

ð1 − hiÞ; q ¼
X
i

ð1 − hiÞ2: ð3Þ

The resource surplus of a typical species is given by

hΔμi ¼
�X

i

hiσμi −
�X

i

σμi þ ϵxμ

��
¼ −pm ð4Þ

(the angular brackets denote the mean over μ). Negative for
most species, Δμ should hit zero for the lucky outliers who
survive. We find that the spread of resource surplus values
is given by ψ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1 − pÞqþ ϵ2
p

(see the SM [22]).
Intuitively, this is because species differ in cost (variance
ϵ2), and their strategy [fσμig with variance pð1 − pÞ] picks
out resources with different availability (with total squared
deviation q). For this reason, rather than using q and m

directly, for our order parameters, we choose ψ and the
ratio λ≡ ðpm=ψÞ.
Each particular set of competitors constitutes “frozen

disorder,” and the properties of a typical community can be
computed using methods of statistical physics of disordered
systems [25], as detailed in the SM [22]. For simplicity, all
of the results will be quoted for the simplest supply model
HiðTiÞ ¼ ðRi=TiÞ, where each resource is characterized by
a single parameter: its total supply Ri (see the SM [22] for
the general case). Our calculation yields explicit equations
for the order parameters ψ and λ at equilibrium, in the
thermodynamic limit N;S → ∞ at an α held constant:

1 − αIðλÞ
1 − αEðλÞ ¼ 1þ ð1 − pÞ λ

ψ

ψ2½1 − αIðλÞ� ¼ ϵ2 þ pð1 − pÞ ¯δR2½1 − αEðλÞ�2: ð5Þ

Here, ¯δR2 is the variance of resource supply Ri, and
IðλÞ≡R∞

λ ðy−λÞ2e−ðy2=2Þðdy= ffiffiffiffiffiffi
2π

p Þ and EðλÞ≡R∞
λ e−ðy2=2Þ×

ðdy= ffiffiffiffiffiffi
2π

p Þ are auxiliary functions that can be expressed in
terms of the error function erf.
The role of ϵ in our model is to measure how strongly a

species’ fate is influenced by intrinsic, rather than inter-
action-dependent (ecological) factors [16]. To study the
equations above, consider first the limit ϵ → 0, where the
scatter of intrinsic organism costs is negligible. In this limit,
the parameter space separates into two phases [Fig. 2(a)].
One of these corresponds to the solution ψ¼1−αEðλÞ¼0
and will be called the S phase; the other has ψ ≠ 0 and will
be called the V phase. The critical line [the dotted line in
Fig. 2(a)] is described by

δR2
crit ¼

1 − p
p

λ2

1 − αcritIðλÞ
; where λ ¼ E−1ð1=αcritÞ:

For δR2 ¼ 0, the transition occurs at αcrit ¼ 2, consistent
with the perceptron phase transition [25,26].
To understand the physical meaning of these phases,

consider first a community consisting of N perfect spe-
cialists with costs χμ ≡ 1. This community constitutes an
example of the S phase, where the immediate environment
of individuals is fully “shielded” from external conditions:
faced with an uneven resource supply, species’ abundance
will adjust to drive resource availability to hi ¼ 1 for all i’s,
restoring symmetry. In general, a restricted set of species
(small α) or a strongly heterogeneous resource supply

(large δR2) will prevent the community from exactly
matching demand to the uneven supply, and the externally
imposed asymmetry between resources will propagate

into the organisms’ actual environment ~h (the V phase,
“vulnerable” to external perturbations). However, as the
community is exposed to new species [α is increased above
the critical value; see the arrow in Fig. 2(a)], the community

transitions into the shielded phase where the environment ~h
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is fully symmetric (m ¼ q ¼ 0) and is insensitive to
external conditions.
To confirm this interpretation, consider the number of

coexisting species at equilibrium. As we have seen,
geometrically, this number is the codimension (N minus
the dimension) of the region of ∂Ωwhere the equilibrium is
located. Remarkably, this elusive quantity can also be
computed analytically. Specifically, one can compute the
distribution of the resource surplus Δ of all αN species at
equilibrium [Fig. 2(b); see the SM [22]]:

pðΔÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2πψ2

p e−½ðΔþλψÞ2=2ψ2�θð−ΔÞ þ EðλÞδðΔÞ: ð6Þ

Here, θ is the Heaviside function constraining Δ to be
negative. The δ-shaped peak at Δ ¼ 0 represents the
fraction of species whose resource demand is met. The
number of survivors is therefore αNEðλÞ, in excellent
agreement with simulations [Fig. 2(c)]. The S phase where
αEðλÞ ¼ 1 therefore harbors a complete set of exactly N
species. If the perturbation of external conditions is small,
no species will go extinct. Since the vectors hi and χμ (μ
running over N surviving species) are related by a full-rank
matrix σμi, the resource availability at the new equilibrium
will remain exactly the same, confirming our interpretation
of this shielded phase.
For a nonzero ϵ, the strict phase transition is replaced by

a crossover [Fig. 3(a)]. At large ϵ, community structure is
no longer shaped by interactions between community
members; instead, it becomes dominated by species who
outperform others in all circumstances, and the environ-
mental feedback studied here becomes irrelevant [16].
For small ϵ’s, however, the distinct features of the shielded
and vulnerable phases remain clearly recognizable: the
fluctuations of resource availability are, respectively, of
order ϵ or much larger than ϵ [Fig. 3(b)].

This result has intriguing implications. Consider a com-
munity facing the strongly uneven resource supply shown in
Fig. 3(b) (top panel). Define a species’ individual perfor-
mance as its growth rate when placed in this environment,
with no other organisms present. One might expect this
performance metric to be predictive of species’ survival in a
community setting: surely, increasing the supply of maltose
to a community should favor organisms that grow well on
maltose. In the more intuitive V phase, this expectation is
indeed correct. However, in the S phase, the internal
environment becomes a collective property governed by
the statistical properties of the species’ pool, rather than
by the external conditions [Fig. 3(b), bottom panel]. As a
result, the performance measured in external conditions
becomes irrelevant: it no longer predicts whether a species
will survive (see Fig. S4 of the Supplemental Material [22]).
In ecological terms, the model considered here was

purely competitive: increasing the abundance of any
species reduces the growth rates of everyone else; i.e.,
there are no “cooperative interactions.” Nevertheless, we
have shown that, at high dimension, the parameter space of
this classic resource competition model contains a strongly
collective regime. These conclusions were drawn in
the context of a particular, highly simplified model.
Specifically, our analysis ignored spatial structure, assumed
deterministic dynamics, and focused on equilibrium states
only. The nonstationary nature of real communities is
famously one of the key factors promoting and maintaining
ecological diversity, and it is missed by an equilibrium
model [27]. Stochasticity and spatial structure are also
tremendously important in most contexts, especially if
evolutionary aspects are taken into consideration [28].
Nevertheless, the goal of this Letter was to explore
specifically the feedback of organisms onto their

FIG. 3. (a) At finite ϵ, the phase transition is replaced by a
crossover. Theoretical curves are overlaid with simulation data
points for a range of α (ten instances each). At large α, we observe
ψ → ϵ, confirming that the fluctuations of hi become negligible.
(b) The qualitative distinction between phases persists at finite ϵ.
Here, simulation results are shown for ϵ ¼ 10−3. (Upper panel) A
community faces a bimodal supply of N ¼ 50 resources. (Lower
panel) The equilibrium availability of resources hi (mean �
standard deviation over 500 instances) for two values of α
corresponding to different phases [highlighted in (a)]. In the
shielded S phase, the asymmetry of the external supply does not
affect the resource availability hi.

FIG. 2. (a) The phase transition at ϵ → 0. In the S phase, above
a critical α (the dotted line), the fluctuations of resource
availability vanish, shown here on log scale to highlight the
transition. (b) The distribution of resource surplus at equilibrium.
Black, the theoretical prediction; red, simulation data accumu-
lated over 500 realizations at N ¼ 50, shown for extinct species
only (see the SM [22] for details). (c) The number of surviving
species at equilibrium as a function of α at ¯δR2 ¼ 1 [cf. the arrow
in (a)] for three values of ϵ. Theoretical prediction (black); mean
over 500 simulations at N ¼ 50 (red); the standard error of the
mean is too small to be visible. The deviation at ϵ ¼ 10−4 is an
effect of a small N. The dotted line is at critical α; shading labels
the two phases.
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environment and identify the implications of large dimen-
sionality. For this purpose, the simplified model adopted
here provides a convenient starting point, and highlights the
promise of applying statistical physics to gain analytical
insight into the nonintuitive phenomenology of large-
dimensional metabolic networks [29] and highly diverse
ecosystems. The mean-field nature of our model allows us
to hope that the techniques of out-of-equilibrium statistical
physics of disordered systems could also provide some
insight into its dynamical behavior.
In other fields of theoretical biology, e.g., neuroscience

and learning theory, statistical physics has already uncov-
ered a wealth of phenomena that could never be understood
from sketches of “which neuron activates which neuron.” In
ecology, we can expect its impact to be equally dramatic,
yet this direction remains underexplored; see, however,
recent works [19–21]. An important novelty of our
approach was to focus on function, rather than composi-
tion. Currently, the terms “large-N ecology” evoke pri-
marily the investigation of mechanisms of coexistence,
starting from the classic work of May [30]. By contrast, our
main goal here was to characterize a functional conse-
quence of ecological dynamics, namely, the environment
that a community shapes for itself.
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