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The drainage of vertical foam films governs their lifetime. For a foam film supported on a rectangular
solid frame, when the interface presents a low resistance to shear, the drainage dynamics involves a
complex flow pattern at the film scale, leading to a drainage time proportional to the frame width. Using an
original velocimetry technique, based on fluorescent foam films and photobleaching, we measure the
horizontal and vertical components of the velocity in a draining film, thus providing the first quantitative
experimental evidence of this flow pattern. Upward velocities up to 10 cm=s are measured close to the
lateral menisci, whereas a slower velocity field is obtained in the center of the film, with comparable
downwards and horizontal components. Scaling laws are proposed for all characteristic velocities, coupling
gravitational effects, and capillary suction.
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The gravity drainage of a foam film governs its thinning
and its ultimate rupture and is thus a key factor in foam
stability. A vertical thin film of pure liquid breaks into
droplets and disappears in a fraction of second. In foam
films, surfactants ensure the stability with respect to hole
formation but are also at the origin of a surface tension
gradient, i.e., a Marangoni force, which balances the film
weight [1,2]. In their seminal work, Mysels, Shinoda, and
Frankel [1] distinguished two kinds of drainage, associated
to foaming solutions producing either rigid or mobile
interfaces. The rigid ones can resist to in-plane shear stress
and thus remain static during drainage. Consequently, a
Poiseuille flow, driven by the gravity g, develops between
the interfaces with a typical velocity, known as the
Reynolds velocity, scaling as vR ¼ ρgh20=η, where ρ and
η are, respectively, the density and the viscosity of the
aqueous solution and h0 is the thickness of the film. When
h0 ¼ 3 μm, vR ≈ 100 μm=s. Mobile interfaces, in contrast,
can deform and flow. However, Mysels, Shinoda, and
Frankel still assume that the interface area is locally
conserved: The mobile interfaces are described as an
inextensible two-dimensional liquid with an interface shear
viscosity ηs. In this latter case, drainage is much faster and
the velocity of the fluid is close to the interface velocity.
Because of its low resistance to shear, complex instabilities
can develop in the film, as marginal regeneration [3–5] or
2D turbulence [6–8].
For mobile films, the typical drainage time is propor-

tional to the film width [1,3], which is a clear experimental
signature of a drainage dominated by lateral boundary
effects. Close to the meniscus connecting a thin film to a
solid frame, the interface curvature, and the resulting
Laplace pressure, are non-negligible and induce a pres-
sure-driven flow from the film toward the meniscus.

This phenomenon produces a pinching of the film along
the menisci with both rigid [9] or mobile interfaces [5,10].
In the case of vertical films with mobile interfaces, these
film thickness inhomogeneities are unstable in a gravity
field [11–13]: The thinnest parts, at the edge of the film,
move upwards, while the thickest ones, in the center of the
film, move downwards. This results in a net volume flux
downwards, which has been conjectured by Mysels,
Shinoda, and Frankel to dominate the drainage process
for mobile films [1].
In this Letter, we measure the velocity field in such a

vertical mobile film, and we provide the first quantitative
measurement of the horizontal component of the velocity,
which is shown to be of the same order of magnitude as the
vertical one. On the basis of the ideas developed by Mysels,
Shinoda, and Frankel, which, to our best knowledge, never
led to quantitative predictions, we build original scaling
laws for both the upward and the downward velocities.
The film thickness can be precisely measured by

interferometry, and its time evolution provides some
information on the fluid velocity [14–16]. However, only
the component normal to the thickness gradient is avail-
able. An alternative is to use tracers [17,18], but they
slightly deform the film which, in a vertical film, leads to
artifactual gravity-induced motion. Here, we propose a
novel technique, based on fluorescent labeling of the flow,
which overcomes these drawbacks. Our surfactant sol-
ution is made of 10 g=L sodium dodecyl sulfate (SDS),
0.1 g=L fluorescein sodium, and 10% wt glycerol in pure
water. The equilibrium surface tension is γ ¼ 37 mN=m,
the bulk viscosity η ¼ 1.3 mPa · s, and the density
ρ ¼ 103 kg=m3. Films are created on a vertical metallic
frame of thickness 1 mm and internal width 2W. The
frame is withdrawn from the solution at a constant speed
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U0 ¼ 5 mm=s and stops at t ¼ 0 when the film height
reaches H ¼ 20 mm. The film remains connected to the
bath via a horizontal meniscus, oriented along the x axis.
The y axis is vertical, with its origin at the level of the
solution reservoir (see Fig. 2).
We first performed film thickness measurements for

different frame widths (see Supplemental Material [19])
and evidenced a drainage time proportional to the frame
width, characteristic of mobile interfaces. We then focused
on the velocity measurements using the experimental setup
shown in Fig. 1, with the W ¼ 10 mm frame.
We use a 20mW, 473 nm laser line, split into two partsBf

and Bp of equal power. Two convergent lenses of focal
lengths 10 mm (L1) and 200 mm (L2) expand Bf to a
diameter of approximately 20mm, to excite the fluorescence
over the whole film. This component is captured, with
magnifications between 1 and 5, by a Nikon D7000 digital
camera Cf fitted with the appropriate filter. The laser hits
the film approximately 5° off from its perpendicular, which
allows forCf to bemounted strictly perpendicular to the film
without being saturated by the incoming light.
The beam Bp, on the other hand, is reflected off an

adjustable mirror and through a motorized shutter which
pulses it. It is then focused on the film surface by a
convergent lens (Lp) of focal length 100 mm: The light
arriving at the film is intense enough to photobleach the
fluorophore and thus produce a dark spot on the film.
Depending on the experiment, we used 125 or 10 ms
pulses, which created, respectively, 100 and 40 μm diam-
eter spots. The shutter and the camera are synchronized
with an accuracy of �3 ms.
We first focus on the central portion of the film. At a

given location (xpl, ypl), we photobleached one dark spot
(with a 125 ms pulse) every 250 ms from t ¼ 0 and took
one picture just after the laser pulse [see Fig. 2 (right)]. The
spots remain well contrasted during a few seconds,
although they travel over a distance much greater than
their diameter. This proves experimentally that velocity
gradients across the film are negligible, as we anticipated in
the introduction. We repeated the experiment with different
positions (xpl, ypl) of the photobleaching laser, with two

series of measure at each location. We found a good
reproducibility of the flow except for the series at the
bottom of the film, since it is a region where the velocities
are dominated by eddy circulations and are both much
higher and more random. For each series, the position of all
the spots visible at t ¼ 1 s are reported in Fig. 2 (left),
which shows the global structure of the flow.
At each time t, the distance between the last two spots

gives a directmeasure of thevelocity at the location (xpl, ypl).
The relative error on thevelocity ismainly due to the spot size
and is less than 10%. Its x and y components at t ¼ 1 s are
plotted in Fig. 3 for the same locations as in Fig. 2, except
the lowermost line. At this time, the film thickness is 4.7 μm
at y ¼ 9 mm (see Supplemental Material [19]) and 1.6 μm
at y ¼ 19 mm (data not shown). In the following, orders of
magnitude are obtained using h0 ∼ 3 μm. Both velocity
components are of the order of 1 mm=s, which is 10 times
larger than the Reynold velocity. For each height in the film,
the x component has been fitted by a straight line. The fitting
functions vanish at a position xa close to 0 (jxaj < 0.3 mm
for every height), with a slope ∂vx=∂x ¼ −0.11� 0.05 s−1,
except for the lowest series where the slope is positive. The y
component, on the other hand, is negative and roughly
independent on x up to 2 mm from the edges. It increases
(in magnitude) from top to bottom, and its mean value,
given in the caption of Fig. 3 for each height y, is well fitted
by the law v−fitðyÞ ¼ 0.22y − 4 with y in millimeters and
v−fit in mm=s.
The measure of the upward velocities close to the edges

required a second series of experiments, with better spatial
and temporal resolutions. Indeed, in this region of the film,
velocities and velocity gradients are much higher. For these
reasons, photobleached spots disappear within 100 ms

FIG. 1. Sketch of our experimental setup.
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FIG. 2. (Left) Streak lines recorded just after t ¼ 1 s, visualized
with the photobleached spots produced every 250 ms from t ¼ 0
to t ¼ 1 s (so five spots) at the location marked withþ. The thick
black line represents the frame supporting the film. Spots coming
from different photobleaching locations have been recorded on a
different film. For each location, two spot series are shown (filled
circle and filled square), obtained on two different films, thus
evidencing the very good reproducibility of the flow, except for
the bottom of the film. (Right) Example of an experimental image
of photobleached spots.
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and cannot be tracked over multiple images. Instead, we
photobleach the spot with a 10 ms laser pulse and image the
system 10–60 ms later, when the spot is still trackable. Its
distance from the photobleaching location provides its
velocity. Figure 4 shows the data from these measurements.
The most striking result is a very large increase in the
magnitude of the vertical velocity, from its characteristic
downward value v− ∼ 1 mm=s to a characteristic upward
value vþ ∼ 20 mm=s close to the meniscus. At the middle
height of the film, the typical distance of variation can be
estimated as l ∼ 0.5 mm. This series of measurements is
not as precise as the previous one, since in the worst cases
the time of travel of the spot between creation and capture,
the exposure time of the camera, and the duration of the
laser pulse are of the same order (5–10 ms), leading to
relative errors ranging from less than 10% to 50% as
specified in the caption of Fig. 4.
The velocity field has been determined over the whole

lifetime of the films, and vertical velocity values measured
both in the middle of the film and close to the meniscus are
plotted as a function of time in Fig. 5. The whole drainage
process slowly decelerates with time while keeping a
similar structure.
Because we measure both the horizontal and vertical

velocities, we can determine for the first time the interface
extension during the drainage process. In the central part of
the film, the fits made in Fig. 3 lead to ∂vx=∂x ¼ −0.11�
0.05 s−1 and ∂vy=∂y ≈ 0.2� 0.02 s−1. Our data thus
evidence that div2Dv > 0 and that some interface extension
occurs. The two velocity derivatives are nevertheless of a
similar order of magnitude (and opposite sign) in the whole
film, except at the bottom of the film (y < 6 mm), where
the derivative along y cannot be precisely measured. The
prediction of the velocity field, taking into account this
interface extension, would require an experimental

determination of the coupling between the film extension
and the dynamical surface tension. This is still an exper-
imental challenge [20,21]. However, we believe that a
model based on the original assumption of Mysels,
Shinoda, and Frankel of an inextensible interface, as the
one developed below, may capture a large part of the
physics.
We consider the elementary piece of film S of area dxdy

and thickness hðx; yÞ, as depicted in Supplemental Material
[19]. Its weight is ρgh ∼ 3 × 10−2 Pa, which determines the
relevant order of magnitude for the forces. The Laplace
pressure term and the inertial terms are both maximal in
the pinched region, where they scale, respectively, as
γh20=l

3 ∼ 3 × 10−3 Pa, ρh0∂vþ=∂t ∼ 3 × 10−3 Pa, and
ρh0ðvþÞ2=H ∼ 10−4 Pa (with ∂vþ=∂t ∼ 1 m=s2 from
Fig. 5). Both will be neglected in the following. As ~v is
uniform across the film, only in-plane velocity derivatives
are relevant, and these derivatives are independent on z.
The viscous stress, integrated across the thickness of the
film, thus becomes σ2Dij ¼ η�ð∂vi=∂xj þ ∂vj=∂xiÞ with i
and j equal to x or y and η� ¼ 2ηs þ hη. The term hη is of
the order of 3 × 10−9 Pa · s · m, which is much smaller than
ηs [22]. It is thus neglected in the viscous force div2Dσ2D ≈
2ηsΔ2Dv acting on S.
With these assumptions, the equation of motion of S is

given by 0 ¼ 2∇2Dγ þ 2ηsΔ2Dv − ρghey. In the central
part of the film, velocity gradients are small and the film
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FIG. 3. x (left) and y (right) components of the fluid velocity
within the film, at t ¼ 1 s; the same data as in Fig. 2. Data are
segregated by height in five series (5.4, 8.4, 11.4, 14.4, and
17.4 mm above the solution), indicated by horizontal lines.
Data points are offset (vertically) from these base lines according
to the value of the velocity. Dashed lines are straight line fits
for the x component (from top to bottom, the slopes are
½−0.16;−0.1;−0.07;−0.13; 0.30� s−1) and constant fits for the
y component (from top to bottom: [−0.19;−1.1;−1.2;−2.2;
−2.9� mm=s).
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FIG. 4. y components of the fluid velocity, at t ¼ 1 s, close to
the right lateral meniscus (the same presentation as in Fig. 3, with
a different set of data). Measurements are made 4, 10, 16, and
22 mm from the surface of the bath. The black vertical solid and
dashed lines represent, respectively, the frame and the tip of the
meniscus (i.e., the edge of the film). Colored dashed lines
represent the function v−fitðyÞ þ A exp½ðx − x0Þ=l� given as a
guide for the eyes, with l ¼ 0.5 mm, v−fitðyÞ obtained from the
data of Fig. 3, x0 ¼ 8.5 mm, and A ¼ ½20–30� mm=s for
y ¼ ½10–16� mm. The relative error varies from less than 10%
far from the meniscus to 50% for the data points with the highest
velocities, very close to the meniscus.
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weight is simply balanced by the surface tension gradient,
which thus plays a dominant role in the dynamics.
However, taking the curl of the previous equation and
using the relation div2Dv ¼ 0 allows us to rewrite it without
the variable γ:

2ηsΔ2DΔ2Dvy ¼ ρg
∂2h
∂x2 : ð1Þ

Close to the meniscus, the film thickness is hm ≪ h0 in a
domain of width l along the meniscus, and the derivative
along x dominates. A simplified scaling relation can thus
be deduced from Eq. (1): ηsvþ=l2 ∼ ρgδh, with δh ¼
h0 − hm ∼ h0. The downward velocity v− at the same
height is given by the conservation of the interface area
in the domain between y and the top of the film, vþlþ
v−W ¼ 0 (using l ≪ W), leading to

v− ∼ −
ρg
ηs

h0l3

W
: ð2Þ

Note that the downward volume flux across the hori-
zontal line at position y is vþlhm þ v−Wh0 ≈ v−Wh0 (as
hm ≪ h0). This flux is at the origin of the film drainage.
Using the experimental values of l and h0 previously

obtained, the predicted velocities are vþ ∼ 20 mm=s and
v− ∼ 1 mm=s if ηs ≈ 4 × 10−7 Pa · s · m. This value is of

the same order as the value ηs ¼ 0.8 × 10−7 Pa · s · m
reported in Refs. [22,23] for the same SDS concentration.
The last unknown parameter in Eq. (2) is the pinch width

l. In the simpler case of a horizontal film of thickness h0
put into contact, at the time t ¼ 0, with a meniscus of radius
r, the pinch characteristics scale at long time as hm ∼
rðτ=tÞ1=2 and l ∼ h0ðt=τÞ1=4, with τ ¼ ηh0=γ [9]. In a
vertical film, the dynamics can be schematized as follows:
The large scale circulation brings a piece of film of
thickness h0 in contact with the lower part of the vertical
meniscus; this piece of film then rises with the velocity vþ
along the meniscus and reaches the height y after a delay
td ∼ y=vþ. Inserting this time scale in the previous scaling,
we predict hm ∼ rðτvþ=yÞ1=2 and l ∼ h0½y=ðvþτÞ�1=4. With
y ¼ 1 cm, we get the orders of magnitude hthm ∼ 100 nm
(with r ∼ 0.3 mm) and lth ∼ 0.2 mm. This last value is
consistent with l ≈ 0.5 mm obtained in Fig. 4. Replacing l
in Eq. (2) allows us to propose finally a prediction for the
drainage velocity in mobile foam films:

v− ∼ −
h20
W

�
ρgγy
ηsη

�
1=2

: ð3Þ

The orders of magnitude of our predictions for v−, vþ, and
l are consistent with our experimental observations, as well
as the scaling v− ∼ 1=W and vþ=v− ∼ −W=l. We thus
believe that the main physical ingredients have been
captured by the model.
In conclusion, our technique allowed us to evidence a

large scale recirculation in a draining foam film, with
mobile interfaces. This technique also provides the first
quantitative measurement of a film extension during
drainage. Scaling laws for the different characteristic
velocities are obtained with a simple model, based on
the fact that the direct gravity drainage is negligible in
comparison with the capillary drainage induced by the
lateral meniscus. The gravity is nevertheless crucial, as it
triggers the recirculation at the film scale, which con-
stantly brings the thick film in contact with the lateral
meniscus. This limits the film pinching and thus makes the
capillary drainage much more efficient than in a horizontal
film. A refined theoretical treatment of (i) the film
extension and (ii) the coupling between the pinching
process and the upward convection of the pinch would
certainly improve our predictions. Qualitatively, the
extension of the film interface induced by its own weight
should increase the downward velocity in the central part
of the film.
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FIG. 5. Vertical component of the velocity as a function of time.
Top figure: Film center, at the positions (in millimeters) filled
circle (x ¼ 0.17, y ¼ 8.3), filled square (−2.7, 8.3), filled triangle
(−1.4, 11.3), and filled inverted triangle (1.5,11.5). Bottom
figure: Film right side filled circle (9.1,16) filled square
(8.8,16), filled triangle (9.1,10), and filled inverted triangle
(8.8,10). The solid black line is the mean value of all data sets.
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