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We consider the amplitude (Higgs) mode in a superconductor with a condensate flow (supercurrent).
We demonstrate that, in this case, the amplitude mode corresponding to oscillations δjΔjΩ expðiΩtÞ of the
superconducting gap is excited by an external ac electric fieldEΩ expðiΩtÞ already in the first order in jEΩj, so
that δjΔjΩ ∝ ðv0EΩÞ, where v0 is the velocity of the condensate. The frequency dependence δjΔjΩ has a
resonance shapewith amaximumatΩ ¼ 2Δ. In contrast to the standard situationwithout the condensate flow,
the oscillations of the amplitude δjΔðtÞj contribute to the admittance YΩ.We provide a formula for admittance
of a superconductorwith a supercurrent. The predicted effect opens newways of experimental investigation of
the amplitude mode in superconductors and materials with superconductivity competing with other states.
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Recent development of terahertz technology (see for a
review Refs. [1,2]) has made it possible to systematically
investigate the amplitude mode (AM) in superconductors
[3–5]. The AM in the superconductors resembles gapful
Higgsmodes in field theories that can be interpreted asHiggs
bosons [6]. The similarity of quantum field theory and
cosmology to superconductivity and other ordered phases
in condensed matter has intensively been discussed previ-
ously [7–10] and the attempts to probe the AM in super-
conductors was stimulated to a large extent by this similarity.
The superconducting AM is gapful with a comparatively

large gap Δ and hence high frequencies Ω ∼ Δ are needed.
Moreover, its observation demands a rather sophisticated
technique of femtosecond optical pump-probe spectros-
copy developed only in the last decades. Therefore, it is of
no surprise that the AM has not been identified exper-
imentally earlier.
The AM mode describing variations of the modulus of

the order parameter differs from the well-known phase
collective mode (CM) in superconductors [11–13] and, in
contrast to it, is not accompanied by perturbations of the
charge density.
A collisionless relaxation of a small perturbation of the

energy gap δjΔðtÞj has been described in Ref. [14] where it
has been shown that it oscillates and decays in time in a
power law fashion,

δjΔðtÞj ∼ δjΔð0Þj cosð2Δ0tÞffiffiffiffiffiffiffiffiffiffi
2Δ0t

p ; ð1Þ

where Δ0 is the unperturbed superconducting order param-
eter. Equation (1) has only recently been confirmed
experimentally [3,4]. Nonlinear solutions for the time
dependence of the perturbation δjΔðtÞj in superconductors
have been published in the last decade [15–24].
Various aspects of the AM and methods of its detection

have been considered in recent publications. Probing the
AM by measuring time-dependent photoemission spectra

has been suggested in Ref. [25] for external perturbations of
different strength. Nonlinear absorption of ac electromag-
netic field in a superconductor (third harmonic generation
and two-photon absorption) and corresponding excitation
of the AM has been studied in Refs. [26–29]. The AM in
superconductors with a strong electron-phonon coupling
has been studied in recent papers Refs. [30,31] and the AM
in d-wave superconductors has been analyzed in Ref. [32].
In all the previous theoretical papers, the ac electric field

EΩ acting on a superconductor (for instance, EΩ in a laser
pulse) is assumed to be sufficiently strong, so that the second
order jEΩj2 is sufficiently large. This requirement is due to
the fact that only the second order (or higher even orders) of
the electric field EΩ can couple to the perturbation δjΔj,
which is natural because jΔj is a scalar whereas EΩ is a
vector. Action of a short laser pulse on a superconductor used
in experiments (Refs. [3,4]) destroys Cooper pairs leading to
sudden suppression of the order parameterΔ. After the endof
the laser pulse the perturbation δjΔj relaxes oscillating in
time in accordance with Eq. (1). This evolution of δjΔðtÞj is
tracedwith the help of an additional weak probe pulsewhose
transmission or reflection coefficients depend on the instant
magnitude of δjΔðtÞj.
In this Letter, we consider the AM in a superconductor in

the presence of a condensate flow with momentum Q0 as
sketched in Fig. 1. It will be shown that, in this case, the

FIG. 1. Schematic representation of the system under
consideration.
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mechanism of the AM excitation is quite different—it is
excited by a weak ac electric field EΩ, which induces ac
condensate momentumQΩ so that the amplitude of the AM
δjΔΩj ∼ ðQΩQ0Þ is linear in the field EΩ. Moreover, the
AM contributes to the admittance of the superconductor
YðΩÞ leading to a sharp peak in Re½YðΩÞ� at the frequency
Ω≃ 2Δ, see Fig. 2. The effect of the AM on the admittance
of superconductors with moving condensate is novel,
although attempts to calculate the impedance of in this
situation have already been undertaken [40–43]. In other
words, the AM can be probed in the presence of the
supercurrent already by measuring the impedance at
frequencies Ω≃ 2Δ. At a fixed frequency Ω, one can
reach a resonance behavior in the vicinity ofΩ ¼ 2ΔðTÞ by
varying the temperature T. It is important to note that the
contribution of the AM to the impedance is zero if the
polarization of the incident electromagnetic wave is
perpendicular to the direction of the vector Q0. No doubt,
realizing the proposed effect experimentally will lead to a
considerably better understanding of properties of the AM
not only in conventional BCS superconductors, but also in
high-Tc superconductors with coexisting order parameters
since the additional (not superconducting) OP is not affected
by a present condensate flow.
Although explicit calculations leading to this result are

rather involved, the main reason for this unusual behavior
can rather easily be understood. The supercurrent is
characterized by condensate velocity vS ¼ QðtÞ=m, where

QðtÞ ¼ ½∇χ − 2πAðtÞ=Φ0�=2 ð2Þ

is the gauge-invariant condensate momentum, χ is the
phase of the order parameter Δ,AðtÞ is the vector potential,
Φ0 ¼ ch=ð2eÞ is the magnetic flux quantum, and m is the
electron mass. The condensate momentumQðtÞ determines
the interaction between the electric field and the modulus

jΔj of the superconducting order parameter. Using the
gauge invariance wewrite the corresponding term Sint in the
action in the standard form

Sint ¼
Z

CQ2ðtÞjΔðtÞj2dtdr; ð3Þ

where C is a constant and QðtÞ can be written as

QðtÞ ¼ Q0 þQΩðtÞ; ð4Þ

where ℏQ0 ¼ v0=m, and v0 is the velocity corresponding to
the dc current I0. The time dependent part QΩðtÞ ¼
Re½QΩ expðiΩtÞ� of the momentum is proportional to the
incident electric field EΩðtÞ ¼ Re½EΩ expðiΩtÞ�,

EΩ ¼ iΩðℏ=emÞQΩ: ð5Þ

Writing the time dependence of the absolute value jΔðtÞj
as

jΔðtÞj ¼ Δþ Re½δjΔjΩ expðiΩtÞ þ δjΔj2Ω expð2iΩtÞ�;
ð6Þ

we reduce the action Sint to the form

Sint ¼ S0 þ 4CRe
Z

δjΔjΩjΔjQ0Q−Ωdr

þ CRe
Z

½2δjΔj2ΩjΔj þ ðδjΔjΩÞ2�Q2
−Ωdr; ð7Þ

where S0 does not contain QΩ.
In the absence of the dc current I0, the second term in the

first line of Eq. (7) vanishes and the action contains only the
quadratic in the electric field terms written in the second
line. This is the standard situation and the experiments
Refs. [3–5] used this type of the coupling to the laser field
for probing the AM.
However, the finite dc supercurrent I0 makes the linear

coupling of the electric field EðtÞ to the AM possible and
the second term in Eq. (7) describes this coupling, which
leads to oscillating perturbations of the gap. It is interesting
to note that in both cases the AM does not lead to density
oscillations and the possibility of the excitation of this
mode by EðtÞ in the linear approximation is not related to
the charge oscillations. Below, we concentrate on studying
the linear response to the electric field EðtÞ.
Of course, the presented heuristic arguments are not

sufficient for deriving final formulas and we make explicit
calculations using the formalism of quasiclassical Green’s
functions [36]. We present first the final results in a form
that can easily be understood without going into details.
We have found that the oscillating electric field EðtÞ

incident onto a superconducting moving condensate with
the momentum Q0 leads to an oscillating perturbation

FIG. 2. The frequency dependence of the real part of the
admittance normalized to its value in the normal state and
corresponding to different parts of the ac currents IΩ. The
dashed line [33–35] corresponds to the real part of the first term

in Eq. (10) [described by Ið1Þ0 in Eq. (31) of Ref. [36]]. The peak in
panel (a) corresponds to the second term in Eq. (10) [described by
δIð1Þ in Eq. (34) of Ref. [36]]. The most important peak in panel
(b) corresponds to the third term in Eq. (10) [described by δIð2Þ in
Eq. (37) of Ref. [36]]. Note that the scale in the panel (a) differs
from that of the panel (b). The dash-dotted black line in panel
(b) represents the line shown in panel (a)—multiplied by a factor
of 5 to be visible in the plot.

PRL 118, 047001 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

27 JANUARY 2017

047001-2



δjΔjΩ expðiΩtÞ of the superconducting order parameter
with the amplitude that can be written as

δjΔjΩ ¼ DðQ0QΩÞFðΩÞ; ð8Þ

where D is the diffusion coefficient and the momenta Q0;Ω
are given by Eq. (4). The function FðΩÞ depends on the
frequency of the ac field Ω. Its explicit form is given in
Eq. (20) and presented in Fig. 3 demonstrating a resonance
atΩ ¼ 2Δ. This is in agreement with the observation of the
free oscillations of δjΔðtÞj [see Eq. (1)] caused by a laser
pulse [3], but contrasts a resonance at Ω ¼ Δ found in
Ref. [4]. The latter observation was due to two-photon
absorption caused by intensive pump laser pulse in the
absence of dc supercurrent. The second weak probe pulse
served as a tool to trace the temporal evolution of δjΔðtÞj.
Although one can probe the AM with the aid of similar
optic methods, the linear dependence of the current on the
electric field obtained here allows one to detect the AM
simply by measurements of the impedance of the system
ZðΩÞ as a function of the dc current I0 and the frequency.
The impedance can be extracted from the coefficients of
reflection or transmission of one pulse of the light irradiat-
ing the superconductor with a supercurrent. We have found
that the current IΩ contains, in particular, the terms IΩ ∼
δΔΩ showing the resonance behavior [36]. In this case, the
current can be written in the form

IΩ ¼ KðQ0; TÞQΩ þ κresðΩÞðQΩQ0ÞQ0; ð9Þ

where κresðΩÞ is a function demonstrating a resonance at
Ω ¼ 2Δ and defined in Eq. (48) of Ref. [36].
Although the first term in Eq. (9) has a standard form of

the response to an external electric field, the second one
demonstrates the new effect of the excitation of the AM and
is the main result of this Letter. The projection I∥Ω of the
current IΩ on the EΩ direction determines the admittance
YðΩÞ ¼ I∥Ω=EΩ and we obtain for this quantity in the limit
of small Q0

YðΩÞ¼ e
iΩ

�
Kð0;ΩÞþQ2

0

∂KðQ0;ΩÞ
∂Q2

0

þ κresðΩÞQ2
0 cos

2ϑ

�
;

ð10Þ
where ϑ is the angle between theEΩjjQΩ and v0 vectors. In
Eq. (10), the first term in the brackets stands for the linear
response, which has been found at Q0 ¼ 0 by Mattis and
Bardeen [33] and Abrikosov and Gor’kov [34], and the
second one is a correction to the linear response due to the
moving condensate (this term has been analyzed for
arbitrary Q0 and small Ω in Ref. [43]).
The third term in Eq. (10) was overlooked in all the

previous studies of the superconductors with moving
condensate, Refs. [41–43]. Actually, it is the resonant term
describing the excitation of the AM. It strongly depends on
the angle ϑ turning to zero for perpendicular polarization of
the vectors Q0 and QΩ. This dependence enables a simple
method of experimental separation between the conven-
tional contributions and the new one corresponding to the
excitation of the AM.
The frequency dependence of the admittance YðΩÞ [36]

is represented in Fig. 2.
Now,we turn to a systematic calculation of the response of

the AM to the electric field. We consider a BCS super-
conductor in the diffusive limit in the presence of the
condensate flow and ac external irradiation. We assume that
all quantities are uniform in space. This condition can be
achieved in a thin superconducting film with a thickness less
than theLondonpenetration and skin depth.Thedynamics of
the order parameter Δ is described by the Usadel equation
[44] generalized for a nonequilibrium case [45–48],

ϵτ̌3ǧ − ǧτ̌3ϵ0 þ ½Δ̌; ǧ� − iD∇ðǧ∇ǧÞ ¼ 0; ð11Þ

where ǧðϵ; ϵ0Þ is a matrix Green’s function defined as a
Fourier transform of a two-times Green’s function.
The diagonal elements of the matrix ǧ are the retarded

(advanced) Green’s functions ĝR=A, and the off-diagonal
element ǧj12 is the Keldysh Green’s function ĝK [49].
The matrices τ̌3 and Δ̌ are diagonal matrices with elements
τ̂3 and Δ̂. The superconducting order parameter Δ̂ ¼
Δðiτ̂2 cos χ þ iτ̂1 sin χÞ depends on the phase χ.
Making the gauge transformation

ǧðt; t0Þ ¼ ŠðtÞǧnðt; t0ÞŠ†ðt0Þ; ð12Þ

where the matrix ŠðtÞ is a diagonal matrix with the
elements Ŝ ¼ expðiτ̂3χ=2Þ, we bring Eq. (11) to the form
(the subscript “n” is omitted)

ϵτ̌3ǧ − ǧτ̌3ϵ0 þ ½Δ̌; ǧ� ¼ −iD½Qτ̌3; ǧ½Qτ̌3; ǧ��: ð13Þ

Equation (13) is supplemented by the normalization
condition

FIG. 3. Dependence of ½δΔ=ðiδWQÞ� on Ω [see Eq. (20)]. As
seen, jδΔ=ðiδWQÞj shows a peak (resonance) as function of Ω at
Ω ¼ 2Δ (solid red line). Also, Re½δΔ=ðiδWQÞ� (dashed green
line) and Im½δΔ=ðiδWQÞ� (dash-dotted blue line) are displayed.
We set γ ¼ 0.05Δ and the temperature T ¼ 0.05Δ.
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ǧ ǧ ¼ 1: ð14Þ

Solving the nonlinear equation (13) with the constraint
(14) is generally not an easy task. However, the solution can
comparatively easily be found in the linear approximation
in the irradiation field EΩ entering only the right-hand side
(RHS) of this equation. We should also take into account
that the value of the gap is reduced in the presence of the
condensate flow but we consider this reduction also as a
small perturbation. In order to justify these approximations
we assume that both Q0 and QΩ are small, i.e.,
DQ2

0;Ω ≪ Δ. Then, we have to find the response of the
superconductor to finite Q0;Ω considering the RHS of
Eq. (13) as a small perturbation.
In the zeroth approximation, the RHS of Eq. (13)

vanishes and the elements of the equilibrium matrix ǧ0
containing on the diagonal the retarded ĝR0 , the advanced
ĝA0 , and the Keldysh Green’s functions ĝ

K
0 as the 12 element,

are well known

ĝRðAÞ0 ¼ gRðAÞ0 τ̂3 þ iτ̂2f
RðAÞ
0 ; ð15Þ

ĝKst ¼ ðĝR0 − ĝA0 Þ tanhðϵ=2TÞ; ð16Þ
where

gRðAÞ0 ðϵÞ ¼ fRðAÞ0 ðϵÞΔ=ϵ ¼ ϵ=ζRðAÞ0 ðϵÞ; ð17Þ

and ζRðAÞ0 ðϵÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵ� iγÞ2 − Δ2

0

p
. The constant γ → þ0

enables choosing the proper branch of the square root
although a finite value of γ can be related to different
sources.
The RHS in Eq. (13) contains two characteristic ener-

gies, DQ2
0 and DQ0QΩ, which are assumed to be small

compared to Δ. Writing

ǧ ¼ ǧ0 þ δǧ0 þ δǧΩ; ð18Þ
Δ ¼ Δ0 þ δΔ0 þ δΔΩ; ð19Þ

where δǧ0 and δΔ0 are proportional to Q2
0, while δǧΩ and

δΔΩ are proportional to Q2
0QΩ, we reduce Eqs. (14), (13)

and the corresponding self-consistency equation for the
order parameter to linear equations for δǧ0, δΔ0, δǧΩ,
and δΔΩ.
Here, we display only the final analytical expression for

the oscillating part δΔΩ of the order parameter. The result
obtained for arbitrary temperature can be written in the
form

δΔΩ ¼ iδWQ½BR
ΩðΩ;Δ0Þ − BA

ΩðΩ;Δ0Þ þ Ban
Ω ðΩ;Δ0Þ�

AR
ΩðΩ;Δ0Þ − AA

ΩðΩ;Δ0Þ þ Aan
Ω ðΩ;Δ0Þ

;

ð20Þ
where δWQ ¼ DQ0QΩ.

In Eq. (20), ARðAÞ
Ω , Aan

Ω , B
RðAÞ
Ω , and Ban

Ω are functions of
temperature T and frequency Ω [36]. Equation (20)
describes a correction to the superconducting order param-
eter due to the linear coupling of electromagnetic field to
the modulus of the order parameter. This contribution was
not considered so far.
Note that the denominator in Eq. (20) is close to zero at

Ω≃ 2Δ, which determines the resonance frequency of
the AM (Higgs mode). The frequency dependence of the
function δΔΩ is depicted in Fig. 3. One can see the
resonance at Ω ¼ 2Δ, which is a very important feature
of the frequency dependence of the perturbation of the
superconducting gap.
Having found the corrections δǧΩ and δΔΩ, we can

calculate [36] the admittance YðΩÞ, Eq. (10). In particular,
we are interested in the third term, which is related to the
excitation of the AM and leads to a sharp peak in Re½YðΩÞ�
at Ω ¼ 2Δ. This term is larger than the second one at low
frequencies Ω ≪ Δ. The admittance YðΩÞ can be extracted
from themeasurements of reflection of the light irradiating a
superconductor with a supercurrent [36]. One can estimate
the normalized conductance ~σðΩÞ ¼ Re½YðΩÞ�=Re½YNðΩÞ�,
where YNðΩÞ is the admittance in the normal state. For
the most important third term in Eq. (10) we obtain
~σðΩÞ≃ ðDQ2

0=ΔÞjδΔΩj=Δ≃ ðQ0=QcrÞ2jδΔΩj=Δ, where
Qcr is the critical momentum of the moving condensate
(Q2

cr ≃ Δ=D). Taking for estimates γ ≃DQ2
0, (this approxi-

mation qualitatively describes the smearing of the BCS
density of states due to moving Cooper pairs [43,50,51]),
we obtain at the resonance point ~σð2ΔÞ ≈ 1. This means that
the height of the peak is of the order of the conductance in
the normal state and can be measured. The frequency
corresponding, for example, to Δ in Al (Tc ≈ 1.2 K,
Δ ¼ 177 μeV) is of the order of 50 GHz [52]. In the case
of high-Tc superconductors, the characteristic frequencies
are shifted to THz frequency range. Note that the dashed line
in Fig. 2 corresponds to the absorption coefficient in
superconductors in the absence of a condensate flow
[33,34] measured experimentally [35]. One can see in
Fig. 2(b) that the peak in absorption is much larger than
the absorption of the irradiation in absence of a condensate
flow. Thus, it can be easily measured in experiments.
Note also that the ac admittance of Al samples with

different concentration of impurities has been measured at
T ¼ 0.355Tc in an applied magnetic field, i.e., in the
presence of a dc supercurrent, by Budzinski et al. [53].
A peak in the absorption near the frequency 2Δ has been
observed in samples with sufficiently high impurity con-
centration and magnetic field. The effect of the resonant
excitation of the order parameter predicted here may serve
as explanation of the obtained experimental results.
In conclusion, we have analyzed the excitation of the

amplitude mode in superconductors by a weak ac irradi-
ation in the presence of a supercurrent I0. We have
shown that the condensate flow leads to a coupling of
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electromagnetic field to the modulus of the order parameter
so that the AM can be excited even in the linear approxi-
mation in amplitude of the ac electric field EΩ ¼
ð−iΩ=eÞℏQΩ. The amplitude of the perturbation of the
superconducting OP is proportional to the scalar product of
the electric field and the velocity of the condensate,
δΔΩ ∝ QΩQ0. The intensity of the signal depends on
the polarization of the incident electric field and has a
resonance at Ω ¼ 2Δ. These features enable a simple
identification of the Higgs mode in superconductors by
measuring the admittance with a linearly polarized light.
We emphasize that our method probes the same Higgs
mode as the one measured in the recent experiments
Refs. [3,4]. Of course, one could measure the admittance
on the same setups as those employed in these experiments
just using one (even weak) laser pulse. The transmission or
reflection coefficients of this pulse have a peak, respec-
tively, dip at Ω ¼ 2Δ. The important feature of the
mechanism of the AM excitation by a weak electromag-
netic field is that it acts directly on the order parameter Δ
not perturbing other order parameters (for example, charge
density wave) which can coexist with Δ, e.g., in high-Tc
superconductors. Combining this and conventional two-
photon absorption methods for studying the AM, one can
obtain important information about dynamics of different
order parameters [54,55].
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