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Because of time-reversal symmetry, two-dimensional topological insulators support counterpropagating
helical edge modes. Here we show that, unlike the infinitely sharp edge potential utilized in traditional
calculations, an experimentally more realistic smooth edge potential gives rise to edge reconstruction and,
consequently, spontaneous time-reversal symmetry breaking. Such edge reconstruction may lead to
breaking of the expected perfect conductance quantization, to a finite Hall resistance at zero magnetic field,
and to a spin current. This calculation underpins the fragility of the topological protection in realistic
systems, which is of crucial importance in proposed applications.
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Introduction.—The quantum spin-Hall phase, a class of
topological phase, was originally proposed for graphene
[1], and has been subsequently understood [2] to be more
relevant for HgTe quantum wells, a prediction that was later
verified experimentally [3]. This topological insulator (TI)
phase supports helical edge modes, the only source of
conduction in the system at low energies. In the quantum
spin-Hall phase, time-reversal symmetry (TRS) is expected
to guarantee no net equilibrium charge current at the edge.
The time-reversed edge modes appear as pairs, implying
zero quantum Hall conductance, but finite quantized spin-
Hall conductance. Originally the Bernevig-Zhang (BZ)
model [4], describing zinc-blende materials under shear
strain, this phase was treated as a juxtaposition of two ν ¼ 1
quantum Hall liquids of opposite spins with opposite
directions of magnetic field. It was later realized [2] that
such a phase may emerge in materials with intrinsic spin-
orbit interactions, without an external strain, captured by
the Bernevig-Hughes-Zhang (BHZ) model [2]. Most
importantly, these two models employed sharp boundary
conditions. Here we generalize these models to the realistic
case of smooth boundary conditions and demonstrate that
TRS may be spontaneously broken, leading, for example,
to spin current and finite Hall conductance at zero magnetic
field. Importantly, this undermines the topological protec-
tion against backscattering at the edge. Moreover, we
predict that the two terminal conductance through a
quantum point contact will exhibit a conductance step at
1 × e2=h, in addition to the expected plateau at 2e2=h.
The physics of this phenomenon is rather straightfor-

ward. Assume that the density of electrons is determined by
an external gate. Then, in order to minimize the dominant
Coulomb energy, the electron density tries to mimic the
positive-charge distribution on the gate. If the latter falls
smoothly to zero near the edge of the system, the electron
density can try to follow suit by separation of the edge

modes, each giving rise to a decrease in density. The
smoother the confining potential, the larger the separation
between the edge modes. This observation is a natural
generalization of the edge-reconstruction scenario pre-
dicted [5–11] and observed [12–15] in the quantum Hall
regime, only that in the present case the edge modes are of
opposite chiralities, which leads to spontaneous breaking
of TRS. Below, we demonstrate the emergence of this
phenomenon based on a microscopic analysis of the two
models mentioned above.
BZ model.—In this model [4] the strain induced spin-

orbital coupling is incorporated into the continuum limit
of the conduction band, leading, for appropriate strain
configurations, to an effective magnetic field in either
the symmetric gauge or the Landau gauge. Hence, the
spectrum consists simply of the familiar Landau levels.
However, in contrast to the case of an actual external
magnetic field, the direction of the effective magnetic field
is opposite for the two spin species. Hence, setting the
chemical potential such that only the lowest Landau level
is occupied results in a pair of counterpropagating edge
modes, one for each spin species. Since the two edge modes
are related by time-reversal transformation, elastic single-
particle backscattering is forbidden unless there is explicit
breaking of TRS due to, e.g., magnetic impurities. Even
though other backscattering processes such as inelastic
single-particle backscattering, two-particle backscattering,
and interaction induced scattering are allowed [16–20],
these processes are irrelevant in the renormalization-group
sense unless the density-density interaction between the
two edge modes is sufficiently strong.
The above studies did not take into account the interplay

between the confining potential and electron-electron inter-
actions. This was addressed in the context of both the integer
[5,6,21] and the fractional [7,8] quantum Hall regimes. For
the specific case of filling factor ν ¼ 1, it was found [6],
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employing the Hartree-Fock (HF) approximation, that when
the confining potential is smooth enough, some electrons
would detach themselves from the bulk and form an addi-
tional ν ¼ 1 strip several magnetic lengths away from the
main bulk of electron density. In other words, the occupation
number as a function of the guiding center coordinate
(i.e., the center of the single-particle wave function in the
Landau gauge) goes down from 1 to 0, then again back to 1,
then it goes down to 0 and remains at 0, as one moves from
the interior of the electron liquid to the exterior [cf. the red
or blue curve in Fig. 1(f)]. Accordingly, there is now an
additional pair of counterpropagating edge modes on the
outer side of the original one. This picture has been
qualitatively confirmed by exact diagonalization calculations
[6]. Similar physics arises, for example, at the ν ¼ 2=3
fractional quantum Hall regime [7,8], where an additional
ν ¼ 1=3 strip forms outside the minimum edge structure
required by the bulk topological order [22]. This latter picture
was recently used by us [23] to provide a unified framework
for the major experimental results in the ν ¼ 2=3 fractional
quantumHall regime [24–26], and is also supported by other
recent experimental works [14,27,28]. Considering the
similarity between quantum Hall states and the BZ model,
it is natural to askwhether a related edge reconstruction takes
place within the BZ picture, too.
To check this similitude, we have studied the BZ model

in the presence of a uniform positive background charge
density that decays linearly to zero at the edge of the system
[Figs 1(a)–1(c)] over a length scale ~w (measured in units
of the magnetic length

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏc=eB
p

, where ℏ is the Planck
constant, c is the velocity of light, e is the electron charge,
and B is the effective magnetic field, determined in the

BZ model by the applied strain). We first employed a
HF approximation [29], which gave rise to three different
regimes. When ~w is small, we find a compact spin-
unpolarized ground state [Fig. 1(d)]: as one approaches
the edge, the occupation of each of the effective Landau
levels drops from 1 to 0 at the same point (the HF analysis
only allows filled or empty single-particle states). This
is the standard picture, compatible with calculations
employing a sharp edge. As ~w increases (smaller slope
of the positive background charge), spin polarization forms
[Fig. 1(e)], marking the onset of a zero temperature
(continuous) phase transition. Similarly to the quantum
Hall setup, as the gradient of the positive-charge back-
ground is made smaller, a single sharp drop in the electron
density (as one moves towards the edge) would create a
dipolelike charge distribution [6]. To reduce the electronic
energy, a more moderate decrease of the electron density is
required. In this regime ( ~w > ~wc1, where ~wc1 ≈ 2.3–2.4),
the energy minimizing configuration consists of two
consecutive steps of the electron density, at two different
distances from the edge, leading to the formation of a
spin-polarized strip near the edge. As ~w is further increased,
the width of this strip and, as a consequence, the total
spin polarization Sz, increases [Fig. 1(i)]. Once the value
of ~w is sufficiently large ( ~w > ~wc2, where ~wc2 ≈ 19–20),
the screening of the background charge by two separate
steps of the respective spin-polarized density profiles
becomes poor, leading eventually to a Chamon-Wen-type
reconstruction [6] within each spin species [Fig. 1(f)].
The occupation numbers and real space electronic density
for each spin species are now nonmonotonic, representing
the emergence of additional strips within each spin species.
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FIG. 1. Edge reconstruction for the BZ model. Panels (a)–(c) describe the schematics of the results for three different distributions of
the confining positive charge (light orange), characterized by ~w, the length scale over which it decays to zero. The edge modes are
marked by broken blue (spin up) and solid red (spin down) lines. Panels (d)–(f) depict the occupations of the electronic states, using
the Hartree-Fock approximation, demonstrating a single drop in density for a sharp edge ( ~w ¼ 0) in (d), spin separation for smoother
edge ( ~w ¼ 5) in (e), and Chamon-Wen-like reconstruction in (f) for an even smoother edge ( ~w ¼ 20). ~Y denotes the position of state,
in units of l (the effective magnetic length); ~Y ¼ 0 is the center of the density drop. Panels (g) and (h) depict the same distributions
as in (d) and (f), respectively, using exact diagonalization. Panel (i) depicts the edge spin magnetization as a function of the slope of
the positive-charge density, suggesting a continuous phase transition.
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To corroborate the predictions of the HF analysis, we have
also performed exact diagonalization calculations for the
lower range of values of ~w [29]. For small values of ~w, we
have found again an unpolarized ground state [Fig. 1(g)].
As ~w is increased, the occupancy becomes smoother, until,
at larger ~w, we find again the emergence of spontaneous
polarization [Fig. 1(h)]. The value of Sz agrees with the HF
prediction (for a given ~w), even though the critical ~wc1 ≈ 4.18
is slightly larger. To summarize, the Hartree-Fock approxi-
mation captures the essence of the problem.
Experimental consequences.—The spontaneous polari-

zation found above has important experimental implica-
tions. Since polarization means that TRS is spontaneously
broken, elastic single-particle backscattering is no longer
forbidden. It is well known that such a process is relevant
in the renormalization-group sense for repulsive density-
density electron interaction (owing to the spatial separation
of the two edge modes in the spin-polarized phase, the
bare backscattering amplitude should not be large). We
thus expect that the violation of conductance quantization
originating from edge transport will be observed as temper-
ature is decreased, or the sample length increases. One may
thus explore the spontaneous breaking of TRS by meas-
uring edge transport in that regime. Only at lower temper-
atures is localization expected to eventually take place
[16,18]. This result may resolve the hitherto unexplained
puzzle that transport in two-dimensional TIs appears to
be ballistic as long as the samples are small [3,32], but
longer samples (longer edges) exhibit lower conductance
[3,33,34], providing evidence for backscattering.
An even starker demonstration of TRS breaking is

provided by the setup depicted in Fig. 2(a), consisting of
a standard quantum point contact (QPC) positioned in the
middle of a six-terminal device. For example, tuning
the voltage on the split gate so that the inner edge mode
is completely reflected and the outer edge mode is still
fully transmitted, the longitudinal and Hall resistance as
functions of the split-gate voltage should have plateaus at
Rxx ¼ ð2h=3e2Þ and Rxy ¼ ðh=3e2Þ, respectively (for the
derivation, see Ref. [29]). In the general case, where the
transmission probability of the outer (inner) channel is TO

(TI), Rxx¼ð3−TO−TIÞ=ð3TIþ3TO−4TITOÞh=e2 and
Rxy ¼ ðTO − TIÞ=ð3TI þ 3TO − 4TITOÞh=e2 (the sign of
Rxy depends on the way TRS is spontaneously broken).
The two-terminal conductance, given by G2-terminal ¼
ðTO þ TIÞe2=h, exhibits conductance steps at 2 × e2=h;
1 × e2=h; 0. Similar steps in the conductance were
observed in the quantum Hall effects [24,25], and were
regarded as evidence for edge reconstruction [23,35]. We
thus predict a finite Hall resistance at zero magnetic field
due to the spontaneous breaking of TRS. Another impor-
tant consequence of the breaking of TRS is the possible
generation of spin current. Since the spin is a good quantum
number in each of the edge modes, reflection of one edge
mode necessarily means that only one spin direction is

transmitted. The transmitted edge mode can be utilized at
another point in the device as a source for a specific spin.
As mentioned above, in the absence of external TRS
breaking, there is equal probability for the spin current
to be in either direction. To tune the spin current in a
specific direction, a weak external magnetic field in the
desired spin direction may be applied.
Since there is a priori full symmetry between the two edge

modes, the following intriguing situationmay arisewhen two
such QPCs are put in series. Assume that the spontaneous
symmetry breaking is different on the two sides of the sample
[left and right in Fig. 2(b)]. Thus, the two edge channels have
to cross each other, on the top and bottom edges of the
sample. Such a crossing defines a domain wall between a
spin-up and a spin-down region. As it costs exchange energy,
it will probably happen at the most once for each edge at
low temperatures. Thus, if this crossing occurs somewhere
between the two QPCs, the conductance through each QPC
is finite (¼ 1 × e2=h), while the conductance through the
two QPCs in series vanishes.
BHZ model.—The BZ model was originally developed

to predict and describe topologically insulating behavior
in zinc-blende semiconductors such as GaAs. Presently,
however, the experimentally most studied two-dimensional
TI is the mercury telluride (HgTe) quantum well, which is
more faithfully described by the BHZmodel [2]. This model
employs the relevant band structure that leads to band
inversion [36] at specific well thickness, and nontrivial
topological order. In order to check the relevance of the
physical picture described above to the BHZmodel, we have
performedHF calculations for this model in the presence of a
linear confining potential at the edge [29]. As with the BZ
model, and as found in previous studies, when the confining
potential is steep (i.e., the single-particle wave function
vanishes at the edge but there is no other external potential),

FIG. 2. Experimental devices for detecting spontaneous spin
polarization. The electron’s gas is depleted in the yellow regions.
Only a small part of the sample under the split gates is shown.
(a) A quantum point contact may be tuned to reflect one spin
channel and transmit the other, resulting in a quantum Hall effect
at zero magnetic field, and spin current. (b) If the spin polari-
zation happens to be opposite on the two sides of the two-point
contact setup, a situation where each one transmits one channel
but the total transmission is zero may arise.
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there is no spin polarization or edge reconstruction
[Fig. 3(a)]—there is a single pair of counterpropagating,
opposite-spin edge modes. Figure 3(c) shows the corre-
sponding spectrum: the chemical potential intersects the
spectrum for each spin at two points, leading to two edge
modes on the two edges of the system. However, as the
confining potential becomes shallower (13 meV=nm for the
set of parameters used in our simulations, taken from
Ref. [30]) we observe edge reconstruction [Fig. 3(b)]—a
newpair of counterpropagating edgemodes emerges near the
edge. Interestingly, unlike the original counterpropagating
edge modes, which are of opposite spins, the reconstructed
counterpropagating ones are of the same spin. The emer-
gence of a pair of counterpropagating same-spin edgemodes
is very similar to the Chamon-Wen reconstruction [6]. The
fact that the lowest energy state displays edge reconstruction
only in one of the spin channels is due to the gain in exchange
energy. The corresponding spectrum for this spin species
[Fig. 3(d)] shows two additional crossings of the chemical
potential with the spectrum. Thus, as with the BZ model, a
smoother edge leads to spontaneous breaking of TRS. This
symmetry breaking facilitates backscattering between coun-
terpropagating opposite-spin edge state, leading to increase in
the resistance. Moreover, the resulting difference in spin-
density profiles near the edge leads to different tunneling
amplitudes of the two spin directions at a quantum point
contact. This yields, again in agreementwith the results of the
BZ model, (i) a finite spin current and a finite Hall conduct-
ance at zero magnetic field, as well as (ii) possible trans-
mission blockade through two QPCs in series [Fig. 2(b)].

Discussion.—The analysis presented here shows that a
realistic smooth edge potential may lead to spontaneous
breaking of TRS as well as to the appearance of additional
edge modes in two-dimensional topological insulators. The
broken TRS undermines topological protection and gives
rise to a finite backscattering length scale lBS. For
relatively short samples, of length L≲ lBS, the resistance
will be quantized. Introducing a QPC leads to a quantized
Hall resistance at zero magnetic field (one mode is perfectly
reflected, while the other is perfectly transmitted [Fig. 2(a)
and Eqs. (1) and (2)]. This is accompanied by quantized
steps of the two-terminal conductance, as the QPC is
pinched off. Moreover, an intricate transmission blockade
through two QPCs in series may arise [Fig. 2(b). For longer
systems L > lBS, backscattering results in deviations
from conductance quantization, possibly in line with the
observation of a higher resistance in HgTe quantum
wells [3,33,34]. On even longer length scales, L ≫ lBS,
backscattering may lead to Anderson localization at
the edge. These intriguing predictions, including the
emergence of net spin current at zero magnetic field, are
amenable to experimental test.
The applicability of the present study goes much further

than TIs. It includes the quantum spin-Hall effect in
graphene, subject to strong magnetic field [37]. The fact
that edge reconstruction has been predicted [7,8] and
observed [14,15] also in the fractional quantum Hall regime
suggests extensions to fractional TIs [38,39]. It would
be intriguing to explore the additional effects due to the
fractional charge of the reconstructed edge state, and
whether, e.g., one can also generate, in this case, neutral
edge modes in TIs [26,40]. The present study may also
put severe constraints on possible utilization of TIs, from
spintronics to quantum computation [41]. As demonstrated
here, a smooth edge is detrimental to topological protection.
For example, employing the appropriate parameters for
HgTe [30], we find that at the edge-reconstruction transition,
the bulk electron density drops to zero at the edge on a
scale of 10 nm. The scale determined by the distance to the
electrical gates is typically much larger, implying that we are
always in the edge-reconstructed regime, unless special care
is taken in defining the edge or the contacts of the device.
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