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We show analytically and numerically that the application of an external magnetic field to highly excited
Rydberg excitons breaks all antiunitary symmetries in the system. Only by considering the complete valence
band structure of a direct-band-gap cubic semiconductor, theHamiltonian of excitons leads to the statistics of a
Gaussian unitary ensemblewithout the need for interactionswith other quasiparticles like phonons.Hence,we
give theoretical evidence for a spatially homogeneous system breaking all antiunitary symmetries.
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For more than 100 years, one distinguishes in classical
mechanics between two fundamentally different types of
motion: regular and chaotic motion. Their appearance
strongly depends on the presence of underlying sym-
metries, which are connected with constants of motion
and reduce the degrees of freedom in a given system. If
symmetries are broken, the classical dynamics often
become nonintegrable and chaotic. However, since the
description of chaos by trajectories and Lyapunov expo-
nents is not possible in quantum mechanics, it has been
unknown for a long time how classical chaos manifests
itself in quantum mechanical spectra [1,2].
The Bohigas-Giannoni-Schmit conjecture [3] suggests

that quantum systems with few degrees of freedom and
with a chaotic classical limit can be described by random
matrix theory [4,5] and thus, show typical level spacings.
At the transition to quantum chaos, the level spacing
statistics will change from Poissonian statistics to the
statistics of a Gaussian orthogonal ensemble (GOE) or a
Gaussian unitary ensemble (GUE) as symmetry reduction
leads to a correlation of levels and hence, to a strong
suppression of crossings [1].
To which of the two universality classes a given system

belongs is determined by remaining antiunitary symmetries
in the system. While GOE statistics can be observed in
many different systems like, e.g., in atomic [6,7] and
molecular spectra [8], for nuclei in external magnetic fields
[9–12], microwaves [13–15], impurities [16], and quantum
wells [17], GUE statistics appears only if all antiunitary
symmetries are broken [3,18]. Thus, GUE statistics are
observable only in very exotic systems like microwave
cavities with ferrite strips [19] or billards in microwave
resonators [20] and graphene quantum dots [21].
There is no example for a system showing GUE statistics

in atomic physics. This is especially true for one of the
prime examples when studying quantum chaos: the highly
excited hydrogen atom in strong external fields. Even
though the applied magnetic field breaks time-reversal
invariance, at least one antiunitary symmetry, e.g., time
reversal and a certain parity, remains and GOE statistics are
observed [1,22,23].

Excitons are fundamental quasiparticles in semiconduc-
tors, which consist of an electron in the conduction band
and a positively charged hole in the valence band. Recently,
T. Kazimierczuk et al. [24] have shown in a remarkable
high-resolution absorption experiment an almost perfect
hydrogenlike absorption series for the yellow exciton in
cuprous oxide ðCu2OÞ up to a principal quantum number of
n ¼ 25. This experiment has drawn new interest to the field
of excitons experimentally and theoretically [25–35].
Since excitons in semiconductors are often treated as the

hydrogen analog of the solid state, but also show sub-
stantial deviations from this behavior due to the surround-
ing solid, the question about their level spacing statistics in
external fields arises. First experimental investigations of
the level spacing statistics in an external magnetic field give
indications on a breaking of antiunitary symmetries, which
is, however, attributed to the interaction of excitons and
phonons [31].
Very recently, we have shown that it is indispensable to

account for the complete valence band structure of Cu2O in
a quantitative theory of excitons [28] to explain the striking
experimental findings of a fine structure splitting and the
observability of F excitons [25]. We have also proven that
the effect of the valence band structure on the exciton
spectra is even more prominent when treating excitons in
external fields [35].
In this Letter, we will now show that the simultaneous

presence of a cubic band structure and external fields will
break all antiunitary symmetries in the exciton system
without the need of phonons. This effect is present in all
direct-band-gap semiconductors with a cubic valence band
structure and not restricted to Cu2O. We prove not only
analytically that the antiunitary symmetry known from the
hydrogen atom in external fields is broken in the case of
excitons, but also, by solving the Schrödinger equation in a
complete basis, that the nearest-neighbor spacing distribu-
tion of exciton states reveals GUE statistics. Thus, we give
the first theoretical evidence for a spatially homogeneous
system which breaks all antiunitary symmetries, and
demonstrate a fundamental difference between atoms in
vacuum and excitons.
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Without external fields, the Hamiltonian of excitons in
direct-band-gap semiconductors reads [28]

H ¼ Eg − e2=4πε0εjre − rhj þHeðpeÞ þHhðphÞ; ð1Þ

with the band gap energy Eg, the Coulomb interaction,
which is screened by the dielectric constant ε, and the
kinetic energies of electron and hole. While the conduction
band is almost parabolic in many semiconductors, and thus,
the kinetic energy of the electron can be described by the
simple expression HeðpeÞ ¼ p2e=2me, with the effective
mass me, the kinetic energy of the hole in the case of three
coupled valence bands is given by the more complex
expression [26,28,36]

HhðphÞ ¼ Hso þ ðγ1 þ 4γ2Þp2h=2m0

− 3γ2ðp2
h1I

2
1 þ c:p:Þ=ℏ2m0

− 6γ3ðfph1; ph2gfI1; I2g þ c:p:Þ=ℏ2m0; ð2Þ

with fa; bg ¼ ðabþ baÞ=2. Here, γi denotes the three
Luttinger parameters, m0 the free electron mass, and c.p.
cyclic permutation. The threefold degenerate valence band is
accounted for by the quasispin I ¼ 1, which is a convenient
abstraction to denote the three orbital Bloch functions xy, yz,
and zx [36]. The components of its matrices Ii are given by
Ii;jk ¼ −iℏεijk [28,36], with the Levi-Civita symbol εijk.
Note that the expression for HhðphÞ can be separated
in two parts having spherical and cubic symmetry,
respectively [37]. The coefficients μ0 and δ0 of these parts
can be expressed in terms of the three Luttinger parameters:
μ0 ¼ ð6γ3 þ 4γ2Þ=5γ01 and δ0 ¼ ðγ3 − γ2Þ=γ01, with γ01 ¼
γ1 þm0=me [28,37,38]. Finally, the spin-orbit coupling
Hso ¼ 2Δ=3ð1þ I · Sh=ℏ2Þ between I and the hole spin
Sh describes a splitting of the valence bands at the center of
the Brillouin zone [38].
Let us now consider the case with external fields being

present. Then, the corresponding Hamiltonian is obtained
via the minimal substitution. We further introduce relative
and center of mass coordinates and set the position and
momentum of the center of mass to zero [39,40]. Then, the
complete Hamiltonian of the relative motion reads [41–45]

H ¼ Eg − e2=4πε0εjrj þHB þ eΦðrÞ
þHe½pþ eAðrÞ� þHh½−pþ eAðrÞ�; ð3Þ

with the relative coordinate r ¼ re − rh and the relative
momentum p ¼ ðpe − phÞ=2 of electron and hole [39,40].
Here, we use the vector potential A ¼ ðB × rÞ=2 of a

constant magnetic field B and the electrostatic potential
ΦðrÞ ¼ −F · r of a constant electric field F. The term HB
describes the energy of the spins in the magnetic field
[36,42,45,46]. In this Letter, we want to show that the
Hamiltonian (3) breaks all antiunitary symmetries. Since
the term HB, as well as the spin-orbit interaction, are

invariant under the symmetry operations considered below,
we will neglect them in the following.
Before we investigate the symmetry of H, we have to

note that the matrices Ii are not the standard spin matrices
Si of spin one [47]. However, since these matrices obey the
commutation rules [36]

½Ii; Ij� ¼ iℏ
X3
k¼1

εijkIk; ð4Þ

there must be a unitary transformationU such thatU†IiU ¼
Si holds. This transformation matrix reads

U ¼ 1ffiffiffi
2

p

0
B@

−1 0 1

−i 0 −i
0

ffiffiffi
2

p
0

1
CA; ð5Þ

and we will now use the matrices Si instead of Ii in the
following.
In the special case with vanishing Luttinger parameters

γ2 ¼ γ3 ¼ 0, the excitonHamiltonian (3) is of the same form
as theHamiltonian of a hydrogen atom in external fields. It is
well known that for this Hamiltonian, there is still one
antiunitary symmetry left, i.e., that it is invariant under the
combined symmetry of time inversion K, followed by a
reflection Sn̂ at the specific plane spanned by both fields [1].
This plane is determined by the normal vector

n̂ ¼ ðB × FÞ=jB × Fj ð6Þ

or n̂⊥B=B if F ¼ 0 holds. Therefore, the hydrogenlike
system shows GOE statistics in the chaotic regime.
As the hydrogen atom is spherically symmetric in the

field-free case, it makes no difference whether the magnetic
field is oriented in z direction or not. However, in a
semiconductor with δ0 ≠ 0, the Hamiltonian has cubic
symmetry and the orientation of the external fields with
respect to the crystal axis of the lattice becomes important.
Any rotation of the coordinate system with the aim of
making the z axis coincide with the direction of the
magnetic field will also rotate the cubic crystal lattice.
Hence, we will show that the only remaining antiunitary
symmetry mentioned above is broken for the exciton
Hamiltonian if the plane spanned by both fields is not
identical to one of the symmetry planes of the cubic lattice.
Even without an external electric field, the symmetry is
broken if the magnetic field is not oriented in one of these
symmetry planes. Only if the plane spanned by both fields
is identical to one of the symmetry planes of the cubic
lattice, the antiunitary symmetry KSn̂, with n̂ given by
Eq. (6), is present.
At first, we will show this analytically. Under time

inversion K and reflections Sn̂, at a plane perpendicular to a
normal vector n̂, the vectors of position r, momentum p,
and spin S transform according to [47]
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KrK† ¼ r; KpK† ¼ −p; KSK† ¼ −S; ð7Þ
and

Sn̂rS
†
n̂ ¼ r − 2n̂ðn̂ · rÞ; ð8aÞ

Sn̂pS
†
n̂ ¼ p − 2n̂ðn̂ · pÞ; ð8bÞ

Sn̂SS
†
n̂ ¼ −Sþ 2n̂ðn̂ · SÞ: ð8cÞ

Let us denote the orientation of B and F in spherical
coordinates via Bðφ;ϑÞ¼Bðcosφsinϑ;sinφsinϑ;cosϑÞT .
Possible orientations of the fields breaking the antiuni-

tary symmetry are then, e.g., Bð0; 0Þ and Fðπ=6; π=2Þ,
Bð0; π=6Þ and Fðπ=2; π=2Þ, or Bðπ=6; π=6Þ and F ¼ 0. In
all of these cases, the hydrogenlike part of the Hamiltonian
(3) is invariant under KSn̂, with n̂ given by Eq. (6).
However, other parts of the Hamiltonian like Hc ¼
ðp2

1S
2
1 þ c:p:Þ [see Eq. (2)] are not invariant. For example,

for the case with Bð0; 0Þ and Fðπ=6; π=2Þ, we obtain

Sn̂KHcK†S†n̂ −Hc

¼ 1=8½2
ffiffiffi
3

p
ðS22 − S21Þp1p2

þ 3ðS21p2
2 þ S22p

2
1Þ − 3ðS21p2

1 þ S22p
2
2Þ

þ fS1; S2gð2
ffiffiffi
3

p
ðp2

2 − p2
1Þ þ 12p1p2Þ� ≠ 0; ð9Þ

with n̂ ¼ ð−1=2; ffiffiffi
3

p
=2; 0ÞT . Thus, the generalized time-

reversal symmetry of the hydrogen atom is broken for
excitons due to the cubic symmetry of the semiconductor.
Since a breaking of all antiunitary symmetries is con-

nected with the appearance of GUE statistics, we now
solve the Schrödinger equation corresponding to H for
the arbitrarily chosen set of material parameters Eg ¼ 0,
ε ¼ 7.5, me ¼ m0, γ01 ¼ 2, and μ0 ¼ 0, using a complete
basis. We can then analyze the nearest-neighbor spacings of
the energy levels [23]. To reduce the size of our basis and
thus, the numerical effort, we already assumed Δ ¼ 0 so
that we can disregard the spins of electron and hole.
The cubic part of the Hamiltonian (3) couples the angular

momentum L of the exciton and the quasispin I to the total
momentum G ¼ Lþ I, with the z component MG. For the
radial part of the basis functions, we use the Coulomb-
Sturmian functions of Refs. [28,48], with the radial
quantum number N to obtain a complete basis. Hence,
the ansatz for the exciton wave function reads

jΨi ¼
X

NLGMG

cNLGMG
jN;L; I; G;MGi; ð10Þ

with complex coefficients c.
Without an external electric field, parity is a good

quantum number and the operators in the Schrödinger

equation couple only basis states with even or with odd
values of L. Hence, we consider the case with Bðπ=6; π=6Þ
and F ¼ 0 and use only basis states with odd values of L
as these exciton states can be observed in direct-band-gap
parity-forbidden semiconductors [25,28,29].
After rotating the coordinate system by the Euler angles

ðα; β; γÞ ¼ ð0; ϑ;φÞ to make the quantization axis coincide
with the direction of the magnetic field [45,49], we write the
Hamiltonian in terms of irreducible tensors [37,49]. Inserting
the ansatz (10) in the Schrödinger equation HΨ ¼ EΨ and
multiplying from the left with the state hN0; L0; I; G0;M0

Gj,
we obtain a matrix representation of the Schrödinger
equation of the form Dc ¼ EMc. The vector c contains
the coefficients of the ansatz (10) and the matrix elements
entering the matrices D and M can be calculated using the
relations given in Ref. [28]. The generalized eigenvalue
problem is finally solved using an appropriate LAPACK

routine [50]. In our numerical calculations, the maximum
number of basis states used is limited by the condition
N þ L ≤ 29 due to the required computer memory.
Before analyzing the nearest-neighbor spacings, we have

to unfold the spectra to obtain a constant mean spacing
[1,3,23,51]. The number of level spacings analyzed is
comparatively small since the magnetic field breaks all
symmetries in the system and limits the convergence of the
solutions of the generalized eigenvalue problem with high
energies [28]. As in Ref. [23], we furthermore have to leave
out a certain number of low-lying sparse levels to remove
individual but nontypical fluctuations. Hence, we use about
250 exciton states for our analysis. Owing to this number of
states, we do not present histograms of the level-spacing
probability distribution function PðsÞ, but calculate the
cumulative distribution function [52]

FðsÞ ¼
Z

s

0

PðxÞdx: ð11Þ

The function FðsÞ is shown in Fig. 1 for increasing
values of the parameter δ0 at B ¼ 3 T. In this figure, we also
show the cumulative distribution function, corresponding
to the spacing distributions known from random matrix
theory [3,31]: the Poissonian distribution

PPðsÞ ¼ e−s ð12Þ
for noninteracting energy levels, the Wigner distribution

PGOEðsÞ ¼
π

2
se−πs

2=4; ð13Þ

and the distribution

PGUEðsÞ ¼
32

π2
s2e−4s

2=π ð14Þ

for systems without any antiunitary symmetry. Note that
the most characteristic feature of GUE statistics is the

PRL 118, 046401 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

27 JANUARY 2017

046401-3



quadratic level repulsion for small s and that the clearest
distinction between GOE and GUE statistics can be taken
for 0 ≤ s≲ 0.5. Hence, we see from that, there is clear
evidence for GUE statistics. Note that for all results
presented in Fig. 1, we used the constant value of B ¼
3 T and exciton states within a certain energy range. It is
well known from atomic physics that chaotic effects
become more apparent in higher magnetic fields or by
using states of higher energies for the analysis. Hence, by
increasing B or investigating the statistics of exciton states
with higher energies, GUE statistics could probably be
observed for smaller values of jδ0j. At this point, we have to
note that an evaluation of numerical spectra for δ0 > 0
shows the same appearance of GUE statistics. This is
expected since the analytically shown breaking of all
antiunitary symmetries is independent of the sign of the
material parameters.
If the magnetic field is oriented in one of the symmetry

planes of the cubic lattice, only GOE statistics are observ-
able. Indeed, when investigating the exciton spectrum for,
e.g., Bð0; π=6Þ, the level spacing statistics are best

described by GOE statistics, especially for small values
of s, as can be seen from Fig. 2. Very recently, M. Aßmann
et al. [31] have shown experimentally that excitons in
Cu2O show GUE statistics in an external magnetic field.
However, since their experimental spectra were analyzed
exactly for Bð0; π=6Þ, there must be another explanation for
this observation than the cubic band structure. M. Aßmann
et al. [31] have assigned the observation of GUE statistics
to the interaction of excitons and phonons.
The main advantage of theory over the experiments is the

fact that the exciton-phonon interaction can be left out.
Hence, one can treat the effects of the band structure and of
the exciton-phonon interaction separately. We performed
model calculations to demonstrate that, in general, GUE
statistics appear for a much simpler system; i.e., only the
presence of the cubic lattice and the external fields already
breaks all antiunitary symmetries without the need for
interactions with other quasiparticles like phonons. We did
not intend a line-by-line comparison with experimental
results. Because of the high dimension of the problem as a
result of the presence of the complex band structure, the
spin-orbit interaction, and phonons, this is not possible at
the moment. However, we do not expect that the effects of
the band structure and the phonons on the level spacing
statistics will cancel each other out. Indeed, based on the
analytic part of our analysis and the fact that the operator
describing the interaction between excitons and phonons
looks quite different from the operators in our Hamiltonian
[44], the phonons certainly do not restore antiunitary
symmetries. Instead, the results of Ref. [31] suggest that
phonons will further increase the chaos.
We think that Cu2O is the most promising candidate to

investigate the effect of the band structure. As the experi-
ments in Ref. [31] were performed with the magnetic field
being oriented in a direction of high symmetry, it would now
be highly desirable to investigate exciton absorption spectra
in Cu2O for other orientations of the magnetic field to
observe the effect of the band structure on the line statistics.
In conclusion, we have shown analytically and numeri-

cally that the cubic symmetry of the lattice and the band
structure leads to a breaking of all antiunitary symmetries in
the system of magnetoexcitons. This effect demonstrates a
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FIG. 1. Cumulative distribution function FðsÞ for increasing
values of δ0, with Bðφ; ϑÞ ¼ Bðπ=6; π=6Þ and B ¼ 3 T. Besides
the numerical data (red dots), we also show the corresponding
functions of a Poissonian ensemble (black dash-dotted line),
GOE (blue dashed line), and GUE (green solid line). For
increasing values of δ0, the statistics rapidly change to the one
of a Gaussian unitary ensemble (d). Note that we do not show the
hydrogenlike case δ0 ¼ 0 since we simply obtain the transitional
form between Poissonian and GOE statistics and since this
system is sufficiently well known from literature (see, e.g.,
Refs. [1,22,23] and further references therein).
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FIG. 2. Cumulative distribution function FðsÞ for δ0 ¼ −0.15,
with Bðφ; ϑÞ ¼ Bð0; π=6Þ and B ¼ 3 T. Since B is oriented in
one of the symmetry planes of the lattice, only GOE statistics can
be observed when neglecting phonons.
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fundamental difference between atoms in vacuum and
excitons and is not limited to certain values of the material
parameters, for which reason it appears in all direct-band-
gap semiconductors with a cubic valence band structure.
Furthermore, a closer investigation of excitons in external
fields can lead to a better understanding of the connection
between quantum and classical chaos.
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