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Three-dimensional topological Weyl semimetals can generally support a zero-dimensional Weyl point
characterized by a quantized Chern number or a one-dimensional Weyl nodal ring characterized by a
quantized Berry phase in the momentum space. Here, in a dissipative system with particle gain and loss, we
discover a new type of topological ring, dubbed a Weyl exceptional ring consisting of exceptional points
at which two eigenstates coalesce. Such a Weyl exceptional ring is characterized by both a quantized
Chern number and a quantized Berry phase, which are defined via the Riemann surface. We propose an
experimental scheme to realize and measure the Weyl exceptional ring in a dissipative cold atomic gas
trapped in an optical lattice.
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Recently, condensed matter systems have proven to be a
powerful platform for studying low energy gapless particles
by using momentum space band structures to simulate the
energy-momentum relation of relativistic particles [1,2] and
beyond [3–6]. One celebrated example in three dimensions is
the zero-dimensional Weyl point [7–19] described by the
Weyl Hamiltonian, which has been long sought after in
particle physics but only experimentally observed in con-
densed matter materials [20–22]. Such a Weyl point can be
viewed as amagneticmonopole [23] in themomentum space
and possesses a quantized Chern number on a surface
enclosing the point. Another example is the one-dimensional
Weyl nodal ring [3,24–27], which has no counterpart in
particle physics. It can be regarded as the generalization of
Dirac nodes in two-dimensional systems, such as in gra-
phene, to three-dimensional systems. Such a nodal ring has a
quantized Berry phase over a closed path encircling it but
does not possess a nonzero quantized Chern number. This
leads to a natural question of whether there exists a
topological ring exhibiting both a quantized Chern number
and a quantized Berry phase in the momentum space.
So far, studies on those gapless states focus on closed

and lossless systems. However, particle gain and loss
are generally present in natural systems. Such systems can
often be described by non-Hermitian Hamiltonians [28–31],
which arewidely applied to many different systems [32–44].
Because of the non-Hermiticity, eigenvalues of the
Hamiltonian are generically complex and the imaginary part
of energy is associated with either decay or growth. Another
intriguing feature of a non-Hermitian system is the existence
of exceptional points (EPs) [28–31] at which two eigenstates
coalesce and the Hamiltonian becomes defective, leading to
many novel phenomena, such as loss-induced transparency
[33], single-mode lasers [39,40], and reversed pump depend-
ence of lasers [36].
In this Letter, we investigate a system ofWeyl points in the

presence of a spin-dependent non-Hermitian term and find a

Weyl exceptional ring composed of EPs. In stark contrast to a
Weyl nodal ring [3,25,26], which does not have a nonzero
Chern number, remarkably, this ring exhibits a nonzero
quantized Chern number as long as the integral of the Berry
curvature is evaluated over a surface (labeled by S) that
encloses the whole ring. Since energy is multivalued in the
complex parameter space due to its square root form, a state
on the surfaceSmaybedefinedover theRiemann surface, on
which a function is single valued. On the other hand, the
Chern number is zero when the surface S does not enclose
any part of the ring even when it is located inside it. Besides
the Chern number, such a Weyl exceptional ring has a
quantized Berry phase over a trajectory encircling the ring
twice, instead of once as in the case of the Weyl nodal ring.
Furthermore, we propose a feasible scheme to engineer and
probe the Weyl exceptional ring in a dissipative ultracold
atomic gas. In such a system, we find that the Fermi arc can
still exist but is suppressed, even though the Weyl point
transforms into a ring.
Toy model of Weyl exceptional ring.—Near a Weyl point

in the momentum space, a system can be described by the
Weyl HamiltonianHW ¼ �P

νvνkνσν, where σν represents
Pauli matrices and � the chirality. For clarity, we consider
the positive chirality and choose vν ¼ 1, hereafter. In the
presence of a non-Hermitian term iγσz (γ > 0) associated
with particle gain for spin-up atoms and loss for spin-down
ones, the Hamiltonian becomes

HðkÞ ¼
X

ν¼x;y;z

kνσν þ iγσz; ð1Þ

taking the energy unit to be 1. The eigenvalues are
EθðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − γ2 þ 2ikzγ

p
¼ ffiffiffiffiffiffiffiffiffiffi

AðkÞp
eiθ=2, where AðkÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk2 − γ2Þ2 þ 4k2zγ2
p

with k2 ¼ k2x þ k2y þ k2z , and θ is
defined via cos θ ¼ ðk2 − γ2Þ=AðkÞ and sin θ ¼
2kzγ=AðkÞ. Here, θ is used to label two branches,
given that eiθ=2 gains a minus sign upon θ → θ þ 2π,
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corresponding to the other band. In the absence of γ, energy
of both bands is real and two bands touch at k ¼ 0 with
linear dispersion along all three momentum directions. In
this case, θ takes only two nonequivalent discrete values: 0
and 2π (corresponding to two distinct and separate bands).
When γ > 0, the eigenvalues become complex, and the
single touching point morphs into a Weyl exceptional ring
in the kz ¼ 0 plane characterized by k2x þ k2y ¼ γ2. On this
ring, both the real and imaginary parts of the eigenvalues
vanish [shown in Figs. 1(a) and 1(b)] and two eigenstates
coalesce into a single one (different from the case of
degeneracy). Additionally, in the kz ¼ 0 plane, energy is

EθðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y − γ2

q
, which is purely real outside the

ring and purely imaginary inside it for this simple model as
illustrated in Figs. 1(a) and 1(b). Interestingly, θ takes
continuous values from 0 to 4π (θ and θ þ 4π are
equivalent) and gains 2π when a state travels through
the ring and returns, ending up at another state with
opposite energy, arising from the role of branch points
that the Weyl exceptional ring plays.
In complex analysis, besides using branch cuts, an

alternative visual representation to depict a multivalued
function is the Riemann surface, a two-dimensional (2D)
manifold that wraps around the complex plane an infinite
(noncompact) or finite (compact) number of times. Before
we discuss the topology of the Weyl exceptional ring, let
us first focus on the definition of a closed 2D surface S
via the Riemann surface. In Figs. 1(c) and 1(d), we plot the
Riemann surface of Eθ for kx ¼ 0 (the color represents the
strength of θmod 4π), showing that energy is single valued
on the surface, which connects the different bands. Given
the single value property, we define each state on S to be
living on the Riemann surface. For example, if we consider
a state at k0 with θ0, any other states on the surface S can be
obtained by starting from this state and traveling on the
momentum space surface S while keeping EθðkÞ on the
Riemann surface.
With the proper definition of a closed 2D surface, we can

characterize the topology of a Weyl exceptional ring by the
Chern number on the surface based on two approaches: the

integral of spin vector fields and the Berry curvature.
For the former, the Chern number is given by [45]

N3 ¼
1

4π

I
S
dθ ·

�∂dθ

∂u1 ×
∂dθ

∂u2
�
du1du2; ð2Þ

which characterizes the number of times that the spin field
dθ ¼

P
ν¼x;y;zhσνieν wraps around a closed surface S

parametrized by (u1, u2). Here, eν denotes the unit vector
along the ν direction and hσνi≡ huθðkÞjσνjuθðkÞi with
juθðkÞi being the normalized right eigenstate of HðkÞ [i.e.,
HðkÞjuθðkÞi ¼ EθðkÞjuθðkÞi and huθðkÞjuθðkÞi ¼ 1].
Direct calculations show that N3 ¼ �1 when the surface
S encloses the whole ring as shown in Fig. 2(a), while
N3 ¼ 0 when it does not enclose any part of the ring
[shown in Fig. 2(b)].
Analogous to the scenario without decay [46], we may

also define the first Chern number via the Berry curvature

C2 ¼
1

2π

I
S
ΩθðkÞ · dS; ð3Þ

where ΩθðkÞ ¼ ih∇kuθðkÞj × j∇kuθðkÞi is the Berry cur-
vature. Our calculations show that C2 ¼ �1 when the
surface S encloses the Weyl exceptional ring and C2 ¼ 0,
otherwise, suggesting that the topological charge is entirely
carried by the ring.
The physical meaning of the Berry curvature in this

system can be understood from the following semiclassical
equation under an external gradient force F (see the
Supplemental Material [47] for derivation):

FIG. 1. Energy spectra and the Riemann surface of the toy model in Eq. (1). Spectra with respect to kx and ky for kz ¼ 0 in (a) (real
parts) and (b) (imaginary parts). Real (c) and imaginary parts (d) of the Riemann surface as a function of ky and kz for kx ¼ 0. In (c) and
(d), the color represents the strength of θmod 4π, and the red tube arrow shows a path from θ ¼ 0 to θ ¼ 4π.
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FIG. 2. (a) A surface enclosing a Weyl exceptional ring and
(b) a surface located inside the ring. (c) Lattice structure in the
ðx; yÞ plane. (d) Schematic of trapped atoms being kicked out by
a resonant optical beam (denoted by the grey arrow).
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_rc ¼ ∂kc
EðkcÞ − _kc ×ΩθðkcÞ; ð4Þ

ℏ _kc ¼ F; ð5Þ

where EðkcÞ ¼ Re½EθðkcÞ� þAθðkcÞ · _kc, AθðkcÞ≡
Re½AθðkcÞ − ~AθðkcÞ� with the Berry connection being
AθðkÞ ¼ ihuθðkÞj∂kuθðkÞi and ~AθðkÞ ¼ ih ~uθðkÞj∂kuθðkÞi, where h ~uθðkÞj is the normalized left eigenstate
of H [i.e., h ~uθðkÞjHðkÞ ¼ h ~uθðkÞjEθðkÞ and h ~uθðkÞj
uθðkÞi ¼ 1]; rc and kc are the center coordinate of a wave
packet in the real space and momentum space, respectively.
Clearly, the Berry curvature plays the same role as in the
traditional semiclassical equation in a closed system [48].
However, in this open system, the equation includes a term
that effectively modifies the energy spectra, resulting from
the difference between left and right eigenstates, a feature
in a non-Hermitian Hamiltonian. Without F, the group
velocity is dictated by the real part of the spectra, which
implies that inside the Weyl exceptional ring in the kz ¼ 0
plane, the group velocity vanishes.
Other than the Chern number on the surface, there also

exists a quantized Berry phase characterizing the Weyl
exceptional ring, defined as

C1 ¼
I
2L

ih ~uθðkÞj∂kuθðkÞi · dk; ð6Þ

where the path 2L travels across the ring twice along the
Riemann surface so that the state returns to the original one
after the entire trajectory as shown in Figs. 1(c) and 1(d).
Direct calculations yield C1 ¼ �π, consistent with the
result for a single EP [28]. This Berry phase is different
from that of a Weyl nodal ring in which the quantized Berry
phase is obtained when the trajectory encircles the ring
once [3,25,26].
Realization in dissipative cold atomic gases.—To realize

the Weyl exceptional ring in cold atoms, we consider the
following model:

H ¼
X
kz;x

�
ðhz þ iγÞĉ†kz;xσzĉkz;x þ

X
ν¼x;y

½−Jĉ†kz;xĉkz;xþaeν

þ ð−1ÞjxþjyJSOνĉ
†
kz;x

σνĉkz;xþaeν þ H:c:� þ h0

�
; ð7Þ

where x ¼ jxaex þ jyaey (with a being the lattice con-
stant) labels the location of sites, ĉ†kz;x ¼ ð ĉ†kz;x;↑ĉ

†
kz;x;↓

Þ
with ĉ†kz;x;σ (ĉkz;x;σ) being the creation (annihilation)
operator, J and JSOν (JSOx ¼ −JSOy ¼ JSO) stand for
the tunneling and spin-orbit coupling strength,
h0 ¼ ½−iγ þ ℏ2k2z=ð2mÞ�ĉ†kz;xĉkz;x, with γ denoting the

decay strength, and hz ¼ αkz þ hz is the effective
Zeeman field with α ¼ ℏ2kLz=ð2mÞ where kLz depends

on the wave vector of Raman laser beams along the z
direction, m is the mass of atoms, and hz the Zeeman field
proportional to the two-photon detuning. Here, we consider
the atoms to be trapped in an optical lattice in the x and y
directions while there is no lattice along the z direction.
Without γ, this Hamiltonian, which has two Weyl points

and a fourfold degenerate point, can be experimentally
engineered by coupling two hyperfine states with two pairs
of Raman laser beams in cold atom optical lattices [49].
To generate the decay term representing an atom loss −2iγ
for spin-down atoms, one may consider using a resonant
optical beam to kick the atoms in the j↓i state out of a weak
trap as shown in Fig. 2(d), which has been experimentally
realized in 6Li [44]. Alternatively, one may consider
applying a radio frequency pulse to excite atoms in the
j↓i state to another irrelevant state j3i, leading to an
effective decay for spin-down atoms when atoms in j3i
experience a loss by applying an antitrap.
To see the energy spectra, we write down the

Hamiltonian in the momentum space,

HðkÞ ¼ ðhz þ iγÞσz − htτx þ τyð−bxσx þ byσyÞ; ð8Þ

in the basisΨðkÞT withΨðkÞ¼ðeikxaÂk↑eikxaÂk↓B̂k↑B̂k↓Þ,
where Âkσ (B̂kσ) annihilates a state with spin σ and
momentum k located at A (B) site [A and B constitute a
unit cell as shown in Fig. 2(c)]. Here, ht ¼
2J½cosðkxaÞ þ cosðkyaÞ�, bx ¼ 2JSO sinðkxaÞ and
by ¼ −2JSO sinðkyaÞ; τx;y are Pauli matrices acting on A,
B sublattices. This Hamiltonian can be transformed into
a block diagonal matrix, i.e., H → H0 ¼ ðhz þ iγÞσz−
htσzτz þ τzðbxσy þ byσxÞ, which commutes with τz.
Note that we have neglected the spin-independent term
h0, which has no essential effect on the physics.
Similar to the toy model in Eq. (1), eigenvalues of

this Hamiltonian are Eθ�ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2� − γ2 þ 2ibz�γ

p
¼ffiffiffiffiffiffiffiffiffiffiffiffiffi

A�ðkÞ
p

eiθ�=2, where A�ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb2� − γ2Þ2 þ 4b2z�γ

2
q

with b2� ¼ b2x þ b2y þ b2z� and bz� ¼ �ht þ hz (� label
two particle or hole bands associated with the subspace
τz ¼∓ for H0), and θ� are defined by cos θ� ¼ ðb2� −
γ2Þ=A�ðkÞ and sin θ� ¼ 2bz�γ=A�ðkÞ. Without γ,
energy is purely real, and Weyl points emerge at kW0 ¼
ðkxa; kya; kzazÞ ¼ ½π; 0;−2mπhz=ðℏ2k2LzÞ� or kW� ¼
½0; 0;−2mπð�4J þ hzÞ=ðℏ2k2LzÞ�, where az ¼ π=kLz. The
touching point is fourfold (doubly) degenerate at kW0

(kW�). When γ > 0, the spectrum becomes complex and
it is purely real only in the plane bz� ¼ 0. A touching point
transforms into a closed line (i.e., Weyl exceptional ring)
at which particle and hole bands coalesce when bz� ¼ 0

and b2x þ b2y ¼ γ2, as shown in Fig. 3(a). Around kW0,
the fourfold degeneracy of the touching point is
broken, and there emerge two Weyl exceptional rings
that are not degenerate except at four points with
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j sin kxaxj ¼ γ=ð2 ffiffiffi
2

p
JSOÞ, kx ¼ �ky − π, and kz ¼ −hz=α

[as shown in Fig. 3(a)]. Around kW�, each Weyl point
morphs into a single Weyl exceptional ring, which can be
approximated by k2x þ k2y ¼ γ2=ð4J2SOÞ and kz ¼ f−hz �
J½4 − γ2=ð4J2SO�g=α when γ ≪ 2JSO.
Analogous to the toy model, a Weyl exceptional ring in

this realistic model can be characterized by the Chern
number defined in Eq. (3), i.e., evaluated by an integral of
the Berry curvature over a closed surface S via the Riemann
surface. Around kW0, there are two Weyl exceptional rings
associated with two branches θ�, and the Chern number is
defined for each band with Cθ� ¼ 1 (Cθ�þ2π ¼ −1) when S
encloses one ring. Around kW�, the corresponding band
contributes Cθ� ¼ −1 (Cθ�þ2π ¼ 1). Furthermore, apart
from the Chern number, we can characterize the ring by
a quantized Berry phase defined in Eq. (6), i.e., evaluated
along a closed trajectory enclosing the Weyl exceptional
ring twice for a considered band with a ring.
Another intriguing feature of Weyl semimetals is the

existence of a Fermi arc, surface states that connect two
Weyl points with opposite Chern numbers in a geometry
with edges. When γ > 0, Weyl points develop into Weyl
exceptional rings, and one may wonder on the existence of
surface states with open boundaries. Here, we calculate the
spectra of the open system under open boundaries along the
x direction and plot the real, imaginary and absolute parts
of the spectra in Figs. 3(b), 3(c), and 3(d), respectively. We
neglected the spin-independent energy ℏ2k2z=2m for clarity.

Interestingly, zero energy states emerge for both real and
imaginary parts of the spectra. Yet, the surface states (Fermi
arc) are only associated with those of zero absolute energy,
which connect theWeyl exceptional ring at the center (kW0)
to those on two sides (kW�). These states are doubly
degenerate eigenvectors (not generalized ones [50,51]), one
(the other) of which is localized on the left (right) surface.
Compared to the surface states without γ, their range along
kz decreases with respect to γ because the size of the rings
along the z direction grows with γ. Figure 3(d) shows
the shrinking surface states for γ ¼ 0, 0.35J, 0.7J, and
0.86J. As γ becomes sufficiently large, the rings around
ðkxax; kyayÞ ¼ ð0; 0Þ overlap with those around ðπ; 0Þ in
the kz direction and surface states completely disappear.
To measure the Weyl exceptional ring, a possible

approach is to probe the dynamics of atom numbers of
each spin component after a quench [44]. Initially, if we
only keep the spin-independent optical lattices but switch
off the spin-dependent ones (contributing to the spin-orbit
coupling) and dissipation, we can load spin-up atoms into
the system and the ground state is Ψðk ¼ 0; t ¼ 0Þ ¼
ð 1 0 1 0 Þ= ffiffiffi

2
p

since the Hamiltonian reduces to
H ¼ −htτx. This state can be driven to a state with
k ≠ 0 by accelerating the optical lattices or by applying
an external gradient force. After that, the spin-orbit cou-
pling and dissipation can be suddenly turned on. So this
state is no longer the eigenstate of the system and the atom
numbers will change with time. For example, if k lies in the
bz− ¼ 0 plane, the normalized atom number for spin-down
is given by

n↓ ¼ b2x þ b2y
4jEθj2

�X
λ¼�

eλ2ImðEθÞt=ℏ − 2 cos

�
2ReðEθÞt

ℏ

��
; ð9Þ

where n↓ ¼ N↓eγt=ℏ with N↓ being the atom number.
Outside of the ring, ImðEθÞ ¼ 0 and n↓ ¼ ðb2x þ
b2yÞsin2ðEθt=ℏÞ=E2

θ with an oscillation period of 2πℏ=Eθ,
and inside the ring, ReðEθÞ ¼ 0 and n↓ ¼ ðb2x þ
b2yÞ½

P
λ¼�eλ2ImðEθÞt=ℏ − 2�=ð4jEθj2Þ with no oscillation.

The existence of the Weyl exceptional ring will be
manifested through the change in oscillation periods. In
experiments, one may choose 87Rb (bosons) atoms and
apply blue-detuned laser beams at wavelength λ ¼ 767 nm
[52] to generate the optical lattices with Weyl points. With
specific experimental settings, our model parameters are
given by JSO ¼ 0.5J and J ¼ 0.058ER, where the recoil
energy is ER=ℏ ¼ ℏk2R=2m ¼ 2π × 3.9 kHz with kR ¼
2π=λ and λ being the wavelength of laser beams. The
decay strength γ can be experimentally tuned by controlling
the intensity of the resonant optical beam.
In summary, we have discovered a Weyl exceptional ring

in a dissipative system of Weyl points with particle gain and
loss. Such a ring is characterized by both a quantized Chern
number and a quantized Berry phase, which are defined via
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FIG. 3. (a) Schematic of Weyl exceptional rings denoted by
closed red, green, and cyan lines for the system described by the
Hamiltonian in Eq. (8). The dashed box depicts the first Brillouin
zone. (b) Real, (c) imaginary, and (d) absolute values of the
eigenenergy with respect to kzaz for ky ¼ 0 and γ ¼ 0.7J when
the open boundary condition is imposed along the x direction.
The red lines are the surface states. In (d), additional surface
states for γ ¼ 0; 0.35J; 0.86J are plotted as blue, green, and
yellow lines, respectively. Note that only the parts with zero
absolute energy are associated with surface states.
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the Riemann surface. We further propose an experimental
scheme in cold atoms to realize the Weyl exceptional ring,
which paves the way for future experimental investigation
of such a ring and its unusual topological properties.
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