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We report a lattice QCD calculation of the strange quark contribution to the nucleon’s magnetic moment
and charge radius. This analysis presents the first direct determination of strange electromagnetic form
factors including at the physical pion mass. We perform a model-independent extraction of the strange
magnetic moment and the strange charge radius from the electromagnetic form factors in the momentum
transfer range of 0.051 GeV2 ≲Q2 ≲ 1.31 GeV2. The finite lattice spacing and finite volume corrections
are included in a global fit with 24 valence quark masses on four lattices with different lattice spacings,
different volumes, and four sea quark masses including one at the physical pion mass. We obtain the strange
magnetic moment Gs

Mð0Þ ¼ −0.064ð14Þð09ÞμN . The four-sigma precision in statistics is achieved partly
due to low-mode averaging of the quark loop and low-mode substitution to improve the statistics of the
nucleon propagator. We also obtain the strange charge radius hr2siE ¼ −0.0043ð16Þð14Þ fm2.
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The determination of the strange (s) quark contribution to
nucleon electromagnetic (EM) form factors is of immense
importance, since this is a pure sea quark effect. A nonzero
value of the strange Sachs electric form factor (FF)Gs

E at any
Q2 ≠ 0 would mean that the spatial distributions of s and s
quarks are not the same in the nucleon. Since the extraction of
the vector strangematrix elements hNjsγμsjNiwas proposed
in Refs. [1–3] via parity-violating e − N scattering for which
the dominant contribution arises from interference between
photon (γ) and weak boson (Z) exchanges by the following
relation assuming isospin symmetry:
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a considerable number of experimental efforts by the
SAMPLE, HAPPEX, G0, and A4 [4–15] Collaborations
have been going on for the past two decades. The world data
constrain that Gs

Mð0Þ contributes less than 6% and hr2siE
contributes less than 5% to the magnetic moment and the
mean-square charge radius of the proton, respectively [16].
However, all these experimental results are limited by rather
sizable error bars. Three different global analyses give
Gs

M½Q2 ¼ 0.1 ðGeV=cÞ2� consistent with zerowithin uncer-
tainties and differ in sign in their central values [17–19].
Despite tremendous theoretical efforts, e.g., [20–23], a

detailed convincing understanding about the sign and
magnitude of strange EM FFs is still lacking. A detailed
review of these theoretical efforts can be found in Ref. [24].

Since the direct calculation of the s-quark loop in the
disconnected insertion (DI) is difficult and noisy in lattice
QCD, there have been numerous indirect calculations to
predict the strange vector FFs. Most of the calculations rely
on different models (such as the heavy baryon chiral
perturbation theory) or a combination of experimental
and lattice QCD data of connected u- and d-quark con-
tributions [25–27], etc. The most recent result of such
calculations has found Gs

Mð0Þ ¼ −0.07ð3ÞμN and Gs
Eð0Þ

consistent with zero [28]. While the authors performed a
linear extrapolation of Gs

MðQ2Þ to obtain Gs
Mð0Þ, this linear

behavior is different from what we observe in this work and
the most recent lattice QCD analysis in Ref. [29].
The first lattice QCD calculation was performed in the

quenched approximation [30], and a 2þ 1 flavor dynamical
fermion calculation [31] with relatively heavy pion masses
followed from the same group, who obtained Gs

Mð0Þ ¼
−0.017ð25Þð07ÞμN andGs

Eð0Þ consistent with zero. A recent
lattice QCD calculation [29] has been done with quark
masses corresponding to mπ ¼ 317 MeV, and the authors
obtained Gs

Mð0Þ ¼ −0.022ð8ÞμN and, for the first time,
a nonzero signal for Gs

EðQ2Þ which gave hr2siE ¼
−0.0067ð25Þ fm2. However, one still has to perform the
calculation at the physical pionmass and on several lattices to
consider volume and finite cutoff corrections and overall beat
down the noise to obtain a convincing result which will
substantially sharpen our picture of strange quark contribu-
tions to the nucleon’s EM structure.
Conventionally, we omit the unit nucleon magneton μN

forGs
M in the rest of the Letter. To calculate hNjsγμsjNi, we

compute the DI on the lattice where quark loops in the
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nucleon sea are connected to the valence quarks through the
fluctuating gauge background as shown in Fig. 1. We
present lattice calculations of the strange EM FFs using the
overlap fermion on the (2þ 1) flavor RBC/UKQCD
domain wall fermion (DWF) gauge configurations.
Details of these ensembles are listed in Table I. We use
24 valence quark masses in total for the 24I, 32I, 48I, and
32ID ensembles representing pion masses in the range
mπ ∈ ð135; 400Þ MeV to explore the quark-mass depend-
ence of the s-quark FFs. We employ eigenmode deflation in
the inversion of the quark matrix and use the smeared-grid
Zð3Þ-noise source with low-mode substitution (LMS) to
improve statistics by a very significant amount, the details
of which can be found in Refs. [32–34]. Nucleon two-point
(2pt) and three-point (3pt) correlation functions are
defined as

Π2ptð~p0;t2;t0Þ¼
X
~x

e−i~p
0·~xh0jT

�
χð~x;t2Þ

X
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�
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�
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X
xi∈G

χSðxi;t0Þ
�
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where t0 and t2 are the source and sink temporal positions,
respectively, ~p and ~p0 are the source and sink momenta,

respectively, t1 is the time at which the bilinear operator
VμðxÞ ¼ sðxÞγμsðxÞ is inserted, xi are points on the spatial
grid G, χ is the usual nucleon point interpolation field,
and χS is the nucleon interpolation field with grid-smeared
Z3-noise source, and the three-momentum transfer is
~q ¼ ~p0 − ~p as shown in Fig. 1. For the point sink and

smeared source with t0 ¼ 0 and ~p ¼ ~0 and ~q ¼ ~p0,
the Sachs FFs can be obtained by the ratio of a combination
of 3pt and 2pt correlations with appropriate kinematic
factors,

Rμð~q; t2; t1Þ ¼
Tr½ΓmΠ

3pt
Vμ
ð~q; t2; t1Þ�

Tr½ΓeΠ2ptð~0; t2Þ�
eðEq−mÞ·ðt2−t1Þ 2Eq

Eq þm
:

ð3Þ

Here, Eq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ ~q2
p

and mN is the nucleon mass. The
choice of the projection operator for the magnetic form
factor is Γm ¼ Γk ¼ −ið1þ γ4Þγkγ5=2 with k ¼ 1, 2, 3 and
that for the electric form factor is Γe ¼ ð1þ γ4Þ=2. Then in
the limit ðt2 − t1Þ ≫ 1=Δm and t1 ≫ 1=Δm, we can obtain
two Sachs FFs by an appropriate choice of projection
operators and current directions μ:

Rμ¼iðΓkÞ!ðt2−t1Þ≫1=Δm;t1≫1=Δm ϵijkqj
Eq þmN

Gs
MðQ2Þ;

Rμ¼4ðΓeÞ!ðt2−t1Þ≫1=Δm;t1≫1=Δm
Gs

EðQ2Þ; ð4Þ

with i, j, k ≠ 4 and Δm the mass gap between the ground
state and the first excited state. We note that Rμ contains a
ratio ZPðqÞ=ZPð0Þ, where ZPðqÞ is the wave function
overlap for the point sink with momentum j~qj. It is unity
in the continuum limit but has a small q2a2 error at finite
lattice spacing. We checked this ratio for the 32I (smallest
a) and the 32ID (largest a) lattices, found its effect on the
extrapolated magnetic moment and charge radius is only
about 1%–2%, and thus ignored it.
We incorporate a global-fit technique described in

Ref. [37] to determine the s-quark mass by matching
to the renormalized s-quark mass at the 2 GeV scale in
the MS scheme and use normalized vector currents [38].
To control the excited-state contamination and obtain
better signal-to-noise ratios, we perform a joint two-state
correlated fit by simultaneously fitting the standard
3pt=2pt ratio Rðt2; t1Þ and the widely used summed ratio
SRðt2Þ [39] to calculate DI matrix elements. We call this
hybrid method the combined fit (CF) throughout the rest
of this work. For more details, see Ref. [34]. The
Rðt2; t1Þ and SRðt2Þ fitting formulas for a given direction
of current and momentum transfer can be written,
respectively, as

FIG. 1. Disconnected three-point insertion (DI) to calculate the
s̄γμs matrix element in the nucleon state.

TABLE I. The parameters for the DWF configurations: spatial
or temporal size, lattice spacing [35,36], the sea strange quark
mass under the MS scheme at 2 GeV, the pion mass correspond-
ing to the degenerate light sea quark mass, and the numbers of
configurations used in this work.

Ensemble L3 × T a (fm) mðsÞ
s (MeV) mπ (MeV) Nconfig

24I [36] 243 × 64 0.1105(3) 120 330 203
32I [36] 323 × 64 0.0828(3) 110 300 309
48I [35] 483 × 96 0.1141(2) 94.9 139 81
32ID [35] 323 × 64 0.1431(7) 89.4 171 200
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Rðt2; t1Þ ¼ C0 þ C1e−Δmðt2−t1Þ þ C2e−Δmt1 þ C3e−Δmt2 ;

SRðt2Þ ¼
Xt1≤ðt2−t00Þ

t1≥t0
Rðt2; t1Þ

¼ ðt2 − t0 − t00 þ 1ÞC0 þ C1

e−Δmt00 − e−Δmðt2−t0þ1Þ

1 − e−Δm

þ C2

e−Δmt0 − e−Δmðt2−t00þ1Þ

1 − e−Δm

þ C3ðt2 − t0 − t00 þ 1Þe−Δmt2 :

Here, t0 and t00 are the number of time slices we drop at
the source and sink sides, respectively, and we choose
t0 ¼ t00 ¼ 1. Ci and Δm are fit parameters. The present
scheme with the CF technique allows us to obtain a
stable fit and control the excited-state contamination. We
find, for the lighter quark masses on the 24I and 32I
ensembles, the enhancement in the signal-to-noise ratio is
approximately 5%–10%, and near mπ ¼ 140 MeV for the
48I and 32ID ensembles the CF fit is more stable
compared to the SR and R methods separately.
In Fig. 2, we present the result of CF for a particular case,

the 48I ensemble with quark masses for the nucleon
corresponding to mπ ¼ 207 MeV, Q2 ¼ 0.0515 GeV2,
and several source to sink separations t2 ∈ ½5 − 9�. We
show the SRðt2Þ plot with an inset in the Rðt2; t1Þ plot. One
can clearly see from the SR plot that the slope is negative
and from the R plot that the 3pt=2pt ratio saturates near
t2 ¼ 9. The orange and cyan bands in the R and SR plots
show the error bound obtained from the CF, which is
Gs

MðQ2 ¼ 0.0515 GeV2Þ ¼ −0.029ð9Þ. We present this
plot, in particular, to show how one can obtain a reliable
and stable fit near the physical mπ . The unprecedented
precision we obtain in statistics is partly due to the fact that
we calculate the low-mode contribution to the loop exactly
without any stochastic noise. We find that about 15%–25%

of the signal is saturated by the low modes while determin-
ing the s-quark matrix elements in this calculation.
Next, we explore the Q2 dependence of Gs

MðQ2Þ to
obtain the strange magnetic moment at Q2 ¼ 0. We
compare both the dipole form [40] and the model inde-
pendent z-expansion fit [41,42] given by

Gs;z−exp
M ðQ2Þ ¼

Xkmax

k¼0

akzk;

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þQ2

p
−

ffiffiffiffiffiffi
tcut

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þQ2

p
þ ffiffiffiffiffiffi

tcut
p : ð5Þ

We set tcut ¼ ð2mKÞ2. We keep the first three coefficients
multiplying zk in the z-expansion formula and perform fits
versus Q2. We calculate the jackknife ensemble average
a2;avg of the coefficient a2 and then perform another fit by
setting a2 centered at a2;avg with a prior width equal to
2 × ja2;avgj. We find the effect of setting this prior is almost
insignificant for the 24I and 32I ensemble data, especially
at heavier quark masses. However, the prior stabilizes the
extrapolation of Gs

MðQ2Þ for pion masses around the
physical point for the 48I ensemble. Since the z-expansion
method guarantees that ak coefficients are bounded in size
and that higher order ak’s are suppressed by powers of zk,
we carefully check the effect of the a3 coefficient in our fit
formula and estimate this effect to calculate the systematic
uncertainties in the z-expansion fit. We present the extrapo-
lation of Gs

Mð0Þ using both the dipole and z-expansion
methods in Fig. 3 with the smallest lattice spacing a ¼
0.0828ð3Þ fm used in our simulation and lattice data at the
unitary point for the 32I ensemble with a pion mass
mπ ¼ 330 MeV. The present calculation does not provide
any conclusive evidence of any statistically significant
difference between these two methods, as seen in the
figure. However, because of model independence and
goodness of the fit, we use z-expansion fit results in the
rest of our calculation.

FIG. 2. Combined fit result for disconnected contribution
Gs

MðQ2 ¼ 0.0515 GeV2Þ with mπ ¼ 207 MeV. The bands show
fits to the 3pt=2pt ratios. The current insertion time t1 is shifted by
half the sink-source separation for clarity.

FIG. 3. Comparison between the classical dipole
form and the model-independent z-expansion fit to study the
Q2 dependence of Gs

M and extract Gs
Mð0Þ. The Gs

MðQ2Þ data
points correspond to the 32I ensemble with quark masses
corresponding to mπ ¼ 330 MeV.
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From the z-expansion extrapolations, we obtain 24
different estimates of Gs

Mð0Þ from four different lattice
ensembles with varying quark masses. As the nucleon 2pt
correlation function depends on the valence quark masses
and the strange quark matrix elements depend on mloop, we
use a chiral extrapolation linear in mπ and mloop ¼ mK

[21,43–45]. To account for the partial quenching effect with
the valence-sea pion mass (mπ;vs), and theOða2Þ correction
and volume dependence [46], the global fit formula we use
for the extrapolation of Gs

Mð0Þ to the physical point is

Gs
Mð0;mπ; mπ;vs; mK; a; LÞ
¼ A0 þ A1mπ þ A2mK

þ A3m2
π;vs þ A4a2 þ A5mπ

�
1 −

2

mπL

�
e−mπL; ð6Þ

wheremπ (mK) is the valence pion (kaon) mass andmπ;vs is
the partially quenched pion mass m2

π;vs ¼ 1=2ðm2
π þm2

π;ssÞ
with mπ;ss the pion mass corresponding to the sea quark
mass. A4 includes the mixed action parameter Δmix [47].
The extrapolation of the strange magnetic moment is shown
in Fig. 4, and at the physical point in the limit a → 0 and
L → ∞ we obtain

Gs
Mð0Þjphysical ¼ −0.064ð14Þð04Þð06Þð06ÞμN: ð7Þ

Here, the uncertainties in the parentheses are from the
statistics, interpolation to the physical s-quark mass [37],
introducing a3 coefficients in the z-expansion fit, and the
global fit formula for the continuum extrapolation ofGs

Mð0Þ,
respectively. To calculate the uncertainty associated with the
global fit formula, we consider the higher order volume
correction terms ðm3=2

π =
ffiffiffiffi
L

p Þe−mπL [46],mNmK [44], logm2
π ,

and mπ;vs. We obtain the fit coefficients: A1 ¼ 0.61ð16Þ,
A2 ¼ −2.26ð49Þ, A3 ¼ 0.31ð12Þ, A4 ¼ 0.015ð16Þ, and
A5 ¼ −4.0ð2.4Þ with the sign of A5 consistent with that in
Ref. [46]. We note that the Oða2Þ effect is small, whereas

the partial quenching effect and the volume correction along
with the quark mass dependence play roles in our global fit.
While Gs

Mð0Þ values for different ensembles are consistent
within uncertainty near mπ ¼ 250 MeV, from the fit coef-
ficients it can be seen that, near mπ ¼ 400 MeV, Gs

Mð0Þ
calculated from the 48I ensemble is more negative due to the
partial quenching effect.
For a given valence quark mass we fit Gs

EðQ2Þ using
the z-expansion method described above and calculate the
charge radius from the fitted slope of the data using the
definition hr2siE ≡ −6ðdGs

E=dQ
2ÞjQ2¼0. The net strange-

ness in the nucleon is zero, and thus Gs
Eð0Þ ¼ 0, which we

confirm in our simulation. Chiral extrapolation to the hr2siE
data is obtained from Ref. [44]. Because the method of
finite volume correction of nucleon charge radius is less
clear and hard to obtain [48,49], we employ an empirical
formula for the volume correction to describe our lattice
data. The empirical fit formula we use to obtain hr2siE at the
physical point is

hr2siEðmπ; mπ;vs; mK; a; LÞ
¼ A0 þ A1 logðmKÞ
þ A2m2

π þ A3m2
π;vs þ A4a2 þ A5

ffiffiffiffi
L

p
e−mπL: ð8Þ

We find that the volume correction term similar to the pion
charge radius term derived in Ref. [49] describes our lattice
data well. From the fitted values of the coefficients
in Eq. (8), namely, A1 ¼ 0.03ð2Þ, A2 ¼ −0.04ð8Þ,
A3 ¼ 0.03ð2Þ, A4 ¼ −0.0004ð27Þ, and A5 ¼ 0.001ð7Þ, it
is seen that among different contributions the quark mass
dependence and partial quenching effect are more impor-
tant in determining hr2siE from our lattice data. We also
consider e−mπL, mK instead of logmK , 1=m2

N [44], mπ;vs

and calculate a systematic error derived from different
terms in the global fit formula. We present the value of
hr2siE at the physical point in Fig. 5 which gives

FIG. 4. Strange magnetic moment at 24 quark masses on 24I,
32I, 48I, and 32ID ensembles as a function of the pion mass. The
curved blue line in the figure shows the behavior in the infinite
volume and continuum limit. The cyan band shows the combined
statistical and systematic uncertainties added in quadrature.

FIG. 5. Strange charge radius at 24 quark masses on 24I, 32I,
48I, and 32ID ensembles as a function of the pion mass. The
curved blue line in the figure shows the behavior in the infinite
volume and continuum limit. The cyan band shows the combined
statistical and systematic uncertainties added in quadrature.
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hr2siEjphysical ¼ −0.0043ð16Þð02Þð08Þð07Þ fm2: ð9Þ

The uncertainties in the second and third parentheses of
Eq. (9) are obtained using similar methods described in the
case of Gs

Mð0Þ. The lowest Q2 values for 48I and 32ID
ensembles are 0.051 and 0.073 GeV2, respectively, which
are almost 3–4 times smaller than the lowest Q2 ¼
0.22 GeV2 of the 24I and 32I ensemble. As extracting
the charge radius from the FF data can be sensitive to the
lowest available Q2, this can affect our determination of
hr2siE. A 20% uncertainty in introducing the a3 term in the z
expansion has been included as a systematic in the final
result of hr2siE.
Finally, we present Fig. 6 to compare our result of Gs

Mð0Þ
and Gs

MðQ2 ¼ 0.1 GeV2Þ ¼ −0.037ð10Þð05Þ with some
other measurements of Gs

Mð0Þ and global analyses of Gs
M

at Q2 ¼ 0.1 GeV2. We strongly believe that controlling
excited-state contamination, performing the simulation near
the physical pion mass, and considering the finite size effect
altogether play an important role in determining the strange
magnetic moment as observed in our lattice simulation.
In conclusion, we have performed a robust first-

principles lattice QCD calculation using four different 2þ
1 flavor dynamical fermion lattice ensembles including, for
the first time, the physical pion mass to explore the quark
mass dependence and with finite lattice spacing and volume
corrections to determine the strange quark matrix elements
in the vector channel. We have performed a two-state fit
where we combined both the ratio method and the summed-
ratio method to control excited-state contamination. The
statistical error is greatly reduced by improving the nucleon
propagator with LMS and quark loop with low-mode
averaging. To explore the strange vector form factors at
different momentum transfers, we implemented model-
independent z-expansion fits. Given our precise lattice

prediction for the strange quark magnetic moment of
Gs

Mð0Þ ¼ −0.064ð17ÞμN and strange charge radius hr2siE ¼
−0.0043ð21Þ fm2 at the physical point with systematic
errors included, we anticipate these results to be verified by
experiments in the future and, together with experimental
inputs, to lead to a more precise determination of various
weak form factors.
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