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Quantum metrology utilizes nonclassical resources, such as entanglement or squeezed light, to realize
sensors whose performance exceeds that afforded by classical-state systems. Environmental loss and noise,
however, easily destroy nonclassical resources and, thus, nullify the performance advantages of most
quantum-enhanced sensors. Quantum illumination (QI) is different. It is a robust entanglement-enhanced
sensing scheme whose 6 dB performance advantage over a coherent-state sensor of the same average
transmitted photon number survives the initial entanglement’s eradication by loss and noise. Unfortunately,
an implementation of the optimum quantum receiver that would reap QI’s full performance advantage has
remained elusive, owing to its having to deal with a huge number of very noisy optical modes. We show
how sum-frequency generation (SFG) can be fruitfully applied to optimum multimode Gaussian-mixed-
state discrimination. Applied to QI, our analysis and numerical evaluations demonstrate that our SFG
receiver saturates QI’s quantum Chernoff bound. Moreover, augmenting our SFG receiver with a
feedforward (FF) mechanism pushes its performance to the Helstrom bound in the limit of low signal
brightness. The FF-SFG receiver, thus, opens the door to optimum quantum-enhanced imaging, radar
detection, state and channel tomography, and communication in practical Gaussian-state situations.
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Introduction.—Entanglement is essential for device-
independent quantum cryptography [1], quantum comput-
ing [2], and quantum-enhanced metrology [3]. It has also
been employed in frequency and phase estimation to beat
their standard quantum limits on measurement precision
[4–10]. Furthermore, entanglement has applications across
diverse research areas, including dynamic biological
measurement [11], delicate material probing [12], gravi-
tational wave detection [13], and quantum lithography [14].
Entanglement, however, is fragile; it is easily destroyed
by quantum decoherence arising from environmental loss
and noise. Consequently, the entanglement-enabled per-
formance advantages of most quantum-enhanced sensing
schemes quickly dissipate with increasing quantum
decoherence, challenging their merits for practical
situations.
Quantum illumination (QI) is an entanglement-enhanced

paradigm for target detection that thrives on entanglement-
breaking loss and noise [15–22]. Its optimum quantum
receiver enjoys a 6 dB advantage in error-probability
exponent over optimum classical sensing using the same
transmitted photon number. Remarkably, QI’s advantage
occurs despite the initial entanglement being completely
destroyed.
To date, the only in-principle realization of QI’s optimum

quantum receiver requires a Schur transform on a quantum
computer [23], so that its physical implementation is
unlikely to occur in the near future. At present, the best
known suboptimum QI receivers [20,21]—one of which,
the optical parametric amplifier (OPA) receiver, has been

demonstrated experimentally [21]—can only realize a 3 dB
error-probability exponent advantage. Bridging the 3 dB
performance gap between the suboptimum and optimum
receivers with an implementation more feasible than a
quantum computer is of particular significance for its
application potential and for its deepening our understand-
ing of entanglement-enhanced metrology.
In this Letter, we present an optimum QI-receiver

architecture based on sum-frequency generation (SFG).
In the weak-signal limit, the SFG unitary maps QI target
detection to the well-studied problem of single-mode
coherent state discrimination (see Ref. [24] for a review).
Analytical calculation and Monte Carlo simulations con-
firm that this SFG receiver’s performance approaches
QI’s quantum Chernoff bound (QCB) [18] asymptotically.
Adding a feedforward (FF) mechanism yields the
FF-SFG receiver, whose error probability achieves the
Helstrom bound [33]. The FF-SFG receiver is potentially
promising for other quantum-enhanced sensing scenarios,
such as phase estimation, and it enlarges the toolbox for
quantum-state discrimination [34–47]. In particular, it is the
first architecture—short of a quantum computer—for opti-
mum discrimination of multimode Gaussian mixed states, a
major step beyond the optimum discrimination of single-
mode pure states [48–51].
Target detection.—QI target detection works as follows

[18]. An entanglement source generatesM ≫ 1 signal-idler
mode pairs, having photon annihilation operators
fĉS0m ; ĉI0m∶1 ≤ m ≤ Mg, with each pair being in a two-
mode squeezed-vacuum state of mean photon number
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2NS ≪ 1. The signal modes probe for the presence of a
weakly reflecting target embedded in a bright background,
under the assumption that it is equally likely to be absent or
present, while the idler modes are retained for subsequent
joint measurement with light collected from the region
interrogated by the signal modes. (We shall assume lossless
idler storage, so that the idler modes used for that joint
measurement satisfy ĉIm ¼ ĉI0m .) When the target is present
(hypothesis h ¼ 1), the returned signal modes are ĉSm ¼ffiffiffi
κ

p
ĉS0m þ ffiffiffiffiffiffiffiffiffiffiffi

1 − κ
p

ĉNm
, where κ ≪ 1 is the round-trip trans-

missivity and the fĉNm
g are noise modes in thermal states

containing NB=ð1 − κÞ ≫ 1 photons on average. When the
target is absent (hypothesis h ¼ 0), the returned signal
modes are ĉSm ¼ ĉNm

, where the fĉNm
g are now taken to be

in thermal states with average photon number NB [52].
Omitting the κNS ≪ NB contribution to hĉ†Sm ĉSmi when

the target is present, and conditioned on h ¼ j, the
fĉSm ; ĉImg constitute a set of independent, identically
distributed (iid) mode pairs that are in zero-mean
Gaussian states with a Wigner covariance matrix

Λj ¼
1

4

� ð2NB þ 1ÞI 2CpZδ1j
2CpZδ1j ð2NS þ 1ÞI

�
; ð1Þ

where I ¼ diagð1; 1Þ, Z ¼ diagð1;−1Þ, δij is the

Kronecker delta function, and Cp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κNSðNS þ 1Þp

is
the phase-sensitive cross-correlation that exists when the
target is present. The task of QI target detection is, thus,
minimum error-probability discrimination between twoM-
mode-pair, zero-mean Gaussian states that are character-
ized by the fΛjg.
For equally likely hypotheses, the minimum error-

probability quantum measurement for discriminating
between states with density operators ρ̂0 and ρ̂1 is the
Helstrom measurement uðρ̂1 − ρ̂0Þ, where uðxÞ ¼ 1 for x ≥
0 and 0, otherwise [33]. Absent the availability of a
quantum computer, the best known QI receivers have
error-probability exponents that are 3 dB inferior to
optimum quantum reception. These suboptimum receivers
use Gaussian local operations on each mode pair plus
photon-number resolving measurements and, hence,
belong to the class of local operations plus classical
communication (LOCC). Their suboptimality follows
because LOCC is not optimum for general mixed-state
discrimination [53,54].
To go beyond LOCC, we will employ SFG. The QI

transmitter uses a continuous-wave spontaneous parametric
downconverter (SPDC) to generate M ≫ 1 signal-idler
mode pairs—at frequencies fωSm;ωImg—during target-
region interrogation. These mode pairs originate from a
single-mode pump b̂ at frequency ωb ¼ ωSm þ ωIm. Each
mode has average photon number NS and each mode pair
has a phase-sensitive cross-correlation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NSðNS þ 1Þp

. SFG

is SPDC’s inverse process: M independent signal-idler
mode pairs with the same phase-sensitive cross-correlation
can combine, coherently, to produce photons at the pump
frequency. It is natural, therefore, to explore SFG in seeking
an optimum QI receiver, because the phase-sensitive cross-
correlation Cp in Eq. (1) is the signature of target presence.
We begin with some foundational results for SFG.
Sum-frequency generation.—We will describe SFG

by Schrödinger evolution for t ≥ 0 under interaction
Hamiltonian

ĤI ¼ ℏg
XM
m¼1

ðb̂†âSm âIm þ b̂â†Smâ
†
Im
Þ; ð2Þ

withM ≫ 1, where ℏ is the reduced Planck constant and g is
the interaction strength. We will assume that at time t ¼ 0
the fâSm; âImgmode pairs (at frequencies fωSm;ωImg) are in
iid zero-mean Gaussian states, while the b̂ sum-frequency
mode (at frequency ωb ¼ ωSm þ ωIm) is in its vacuum state.
We will assume that the state evolution stays wholly within
the low-brightness, weak cross-correlation regime wherein
nsðtÞ≡hâ†SmâSmit≪1,niðtÞ≡ hâ†Im âImit ≪ 1, and jCðtÞj2 ≡
jhâSm âImitj2 ≪ nsðtÞ, niðtÞ for all time, where h·it denotes
averaging with respect to the state at time t. The qubit
approximation to this evolution leads to the analytical
results [24]

CðtÞ ¼ Cð0Þ cosð
ffiffiffiffiffi
M

p
gtÞ; ð3aÞ

bðtÞ ¼ −i
ffiffiffiffiffi
M

p
Cð0Þ sinð

ffiffiffiffiffi
M

p
gtÞ; ð3bÞ

nsðtÞ ¼ nsð0Þ; niðtÞ ¼ nið0Þ; ð3cÞ
nbðtÞ ¼ ½MjCð0Þj2 þ nið0Þnsð0Þ�sin2ð

ffiffiffiffiffi
M

p
gtÞ; ð3dÞ

where bðtÞ≡ hb̂it and nbðtÞ≡ hb̂†b̂it. The average photon
numbers in the fâSm; âImg are constant, in this approxima-
tion, because each mode’s nbðtÞ=M contribution to the sum-
frequency mode’s average photon number is negligible.
Equations (3) agree very well with numerical results for
M ¼ 1, 2, and 3 [24]. For any M they reveal a coherent
oscillation between the b̂ mode’s mean field and the cross-
correlation in all signal-idler mode pairs, plus an additional
M-independent oscillation in the b̂ mode’s average photon
number from the weak thermal-noise contribution
[∝ nið0Þnsð0Þ], to nbðtÞ.
Optimum receiver design.—Were hĉ†Sm ĉSmi ≪ 1 under

both hypotheses, QI’s returned-signal and retained-idler
mode pairs would satisfy the low-brightness conditions
needed for Eqs. (3) to apply. Then, when these mode pairs
undergo SFG with the sum-frequency mode b̂ initially in its
vacuum state, b̂’s output state at t ¼ π=2

ffiffiffiffiffi
M

p
g would be

approximately a weak thermal state (average photon
number nT ¼ hĉ†Im ĉImihĉ†Sm ĉSmi) when h ¼ 0, or a coherent

state (with mean field −i
ffiffiffiffiffi
M

p
Cp) embedded in a weak
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thermal background (average photon number nT) when
h ¼ 1. Minimum error-probability discrimination between
the two hypotheses, based on b̂’s output state, is then a
single-mode Gaussian mixed-state problem [24].
Unfortunately, Eq. (1) implies that hĉ†Sm ĉSmi0 ¼ NB ≫ 1

under both hypotheses, violating the low-brightness con-
dition. When these bright signal modes undergo SFG, they
drive b̂ to an equilibrium state [55], precluding the desired
coherent conversion.
To resolve this NB ≫ 1 problem, we propose a receiver

that uses K cycles of π=2
ffiffiffiffiffi
M

p
g-duration SFG interactions,

as shown in Fig. 1. With optimum choices of the frk; εkg,
this figure represents the FF-SFG receiver; setting all the
frk; εkg to zero reduces it to the SFG receiver. We shall
describe the FF-SFG receiver, but present performance
results for both receivers. It suffices to consider a single
cycle comprised of one SFG interaction, plus the pre-SFG
signal slicing, the post-SFG signal combining, and the post-
SFG photon-counting measurements.

Let fĉðkÞSm
; ĉðkÞIm

g be the signal-idler mode pairs at the input

to the kth cycle for 0 ≤ k ≤ K − 1, with ĉð0ÞSm
¼ ĉSm and

ĉð0ÞIm
¼ ĉIm . A transmissivity η ≪ 1 beam splitter taps a

small portion of each ĉðkÞSm
mode, yielding a low-brightness

transmitted mode ĉðkÞSm;1
to undergo a two-mode squeezing

(TMS) operation SðrkÞ [56], with the ĉðkÞIm
mode, and a high-

brightness reflected mode ĉðkÞSm;2
to be retained. For the FF-

SFG receiver, the rk value (which depends on ~hk ¼ 0 or 1,
the minimum error-probability decision as to target absence

or presence based on the measurement results from all prior
cycles [58]) is chosen to almost purge any phase-sensitive

cross-correlation between the fĉðkÞSm;1
; ĉðkÞIm

g mode pairs from

the SðrkÞ operation’s output mode pairs were ~hk a correct
decision. Because SðrkÞ’s output mode pairs are applied to
a SFG process that converts any mode-pair phase-sensitive
cross-correlation to a nonzero mean field for its sum-
frequency (b̂ðkÞ) mode’s output, any significant mean field
indicates that the ~hk decision was wrong. As shown in [24]:
(1) b̂ðkÞ is not entangled with any other SFG output
mode; and (2) each signal-idler mode pair emerging from
SFG is in a Gaussian state. These facts allow us to use the

weak TMS operation Sð ffiffiffi
η

p
CðkÞ
si − rkÞ to approximate the

SFG operation on each signal-idler mode pair, where

CðkÞ
si ≡ hĉðkÞSm

ĉðkÞIm
i.

Following the kth cycle’s SFG operation, we apply the
TMS operation Sð−rkÞ to each signal-idler mode pair.
Under either hypothesis, the number of photons lost by the
signal modes entering the SFG operation matches the
number of photons gained by the b̂ðkÞ mode. The Sð−rkÞ
operation ensures that, when its signal-mode outputs are

combined with the retained fĉðkÞSm;2
g modes on a second

transmissivity-η beam splitter, the fĉðkÞEm
g output modes

contain the same number of photons as the b̂ðkÞ mode. The

photon-number measurements b̂ðkÞ†b̂ðkÞ and
P

M
m¼1 ĉ

ðkÞ†
Em

ĉðkÞEm

then provide outcomes NðkÞ
b and NðkÞ

E that are substantial
when ~hk is incorrect, but negligible when ~hk is correct.
These measurement outcomes are fed-forward for use in
determining ~hkþ1, with ~hK being the receiver’s final
decision as to whether the target is absent or present.
The kth cycle is completed by a TMS operation SðεkÞ,

with εk ¼ ffiffiffi
η

p
rk, that makes the phase-sensitive cross-

correlation of the signal and idler inputs to the (kþ 1)th
cycle independent of rk. The first-order results for the
conditional moments given h ¼ j are [24]

nðkÞs ≡ hĉðkÞ†Sm
ĉðkÞSm

ijh¼j ¼ NB; ð4aÞ

nðkÞi ≡hĉðkÞ†Im
ĉðkÞIm

ijh¼j ¼ NS; ð4bÞ

CðkÞ
si jh¼j ¼ jCp½1 − ηð1þ NBÞ�k: ð4cÞ

Feed-forward and decision.—All that remains to fully
specify the FF-SFG receiver is to derive the optimum frkg
and f ~hkg values, and to choose an appropriate value for K,
the number of cycles to be employed. To do so, we will
draw on a connection to Dolinar’s optimum receiver for
binary coherent-state discrimination [49] by setting rk ¼ 0,
to consider the SFG receiver, and omitting the small
incoherent contribution to the b̂ðkÞ†b̂ðkÞ measurement.

FIG. 1. Schematic of the FF-SFG receiver. Upper panel: two
successive cycles. Lower panel: the components in the kth cycle.
Sð·Þ: two-mode squeezing; SFG: sum-frequency generation; FF:
feedforward operation.
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Then, assuming h ¼ 1, the kth cycle produces a b̂ðkÞ mode
in a coherent state with average photon number

hNðkÞ
b ijh¼1 ¼ Mλ2k and fĉðkÞEm

g modes in iid thermal states

with total average photon number hNðkÞ
E ijh¼1 ¼ Mλ2k, where

λk ≡ ffiffiffi
η

p
CðkÞ
si jh¼1. For η sufficiently small, the h ¼ 1 sta-

tistics of NðkÞ ≡ NðkÞ
b þ NðkÞ

E will match the photon-number
statistics of the coherent state j ffiffiffiffiffiffiffi2M

p
λki. On the other hand,

the h ¼ 0 statistics of NðkÞ are those of the vacuum state,
i.e., NðkÞ ¼ 0 with probability one. Optimum binary coher-
ent-state discrimination [49,51] applied to our problem,

then, gives rk ¼ rðkÞ~hk
, where (see Ref. [24] for an intuitive

explanation)

rðkÞ~hk
¼ λk

2

 
1 −

ð−1Þ ~hkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − exp ½−2MðPk

l¼0 λ
2
l − λ2k=2Þ�

q
!
: ð5Þ

Here, ~hk is the j value that maximizes PðkÞ
h¼j [58], where the

prior probabilities for the kth cycle, fPðkÞ
h¼j∶j ¼ 0; 1g, are

the posterior probabilities of the (k − 1)th cycle that are
obtained from the Bayesian update rule [51,59],

PðkÞ
h¼j ¼

Pðk−1Þ
h¼j PBEðNðk−1Þ

b ; Nðk−1Þ
E ; j; rðk−1Þ~hk−1

ÞP
1
j¼0 P

ðk−1Þ
h¼j PBEðNðk−1Þ

b ; Nðk−1Þ
E ; j; rðk−1Þ~hk−1

Þ
; ð6Þ

for 1 ≤ k ≤ K − 1, where PBEðNðk−1Þ
b ; Nðk−1Þ

E ; j; rðk−1Þ~hk−1
Þ is

the conditional joint probability of getting counts Nðk−1Þ
b

and Nðk−1Þ
E given that the true hypothesis is j and

rk−1 ¼ rðk−1Þ~hk−1
. The Sðrk−1Þ-SFG-Sð−rk−1Þ cascade in the

(k − 1)th cycle is designed to make the photon fluxes that

generate Nðk−1Þ
b and Nðk−1Þ

E much higher if ~hk−1 ≠ h than if
~hk−1 ¼ h. Thus, the update rule will flip ~hk to the other
hypothesis if too many photons are counted in the (k − 1)th
cycle; otherwise, ~hk ¼ ~hk−1 will prevail.
To determine howmany cycles must be run, we reason as

follows. Suppose that h ¼ 1 and we continue to neglect the
small incoherent contribution to the b̂ðkÞ†b̂ðkÞ. We then have

that NðKÞ
T ≡PK−1

k¼0 N
ðkÞ ¼ 2M

P
K−1
k¼0 λ

2
k is the total average

photon number of all the measurements made in the FF-
SFG receiver’s K cycles. To ensure that the receiver’s final
decision, ~hK , as to whether the target is absent ( ~hK ¼ 0) or
present ( ~hK ¼ 1) is optimum, two conditions should be
satisfied: (1) η is small enough that the qubit approxima-
tions in [24] are valid; and (2) K is large enough that

NðKÞ
T =Nð∞Þ

T ¼ 1 − ϵ, for some pre-chosen 0 < ϵ ≪ 1.
Performance.—We begin our performance evaluations

for the FF-SFG and SFG receivers with some asymptotic
results [24]. For η sufficiently small, the coherent

and incoherent (thermal-state) contributions to NðKÞ
T are

NðKÞ
Tcoh

≃ ð1 − ϵÞMκNS=NB and NðKÞ
T therm

≃ −NS lnðϵÞ=2, and
the number of cycles employed is K ≃ − lnðϵÞ=2ηNB.
Equations (4), which underlie these expressions, are valid
only when NS ≪ 1. So, to get asymptotic results, we let

NS → 0, to drive NðKÞ
T therm

to zero, and we increase the

source’s mode number, M, to keep NðKÞ
Tcoh

constant. In this
regime, QI target detection with the FF-SFG and SFG
receivers becomes one of discriminating the coherent

state j
ffiffiffiffiffiffiffiffiffiffi
NðKÞ

Tcoh

q
i from the vacuum. Like the case for the

Dolinar receiver [49], the FF-SFG receiver’s error proba-
bility should then approach the Helstrom bound

PH ¼ ½1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − expð−NðKÞ

Tcoh
Þ

q
�=2, and, like the case for

the Kennedy receiver [48], the SFG receiver’s error-

probability exponent should approach NðKÞ
Tcoh

, which, for
ϵ → 0, is both the QCB for the preceding coherent-state
discrimination problem and that for QI target detection.
To explore how closely the FF-SFG and SFG receivers’

error probabilities approach their asymptotic behavior, we
performed Monte Carlo simulations using NS ¼ 10−4,
κ ¼ 0.01, NB ¼ 20, η ¼ 0.002, and K ¼ 42. These param-
eter values are consistent with the qubit approximation’s
validity. We used 105 (for log10M < 7.8) to 106 simulation
runs (for log10M ≥ 7.8) to obtain our error-probability
estimates [24]. Figure 2(a) compares M-dependent simu-
lation results for the error probabilities of the FF-SFG,
SFG, and OPA receivers with those of the homodyne
receiver for coherent-state discrimination and the Helstrom

bound with NðKÞ
Tcoh

¼ MκNS=NB. At all M values shown,
both proposed receivers outperform the OPA receiver, with
FF-SFG reception’s performance approaching PH. More
importantly, our receivers asymptotically saturate the QCB.
Figure 2(b) shows Monte Carlo results comparing the

FIG. 2. (a) Error probabilities for the SFG, FF-SFG, and OPA
receivers obtained from Monte Carlo simulations, plus analytical
results for coherent-state (CS) discrimination with a homodyne

receiver, and the Helstrom limit PH when NðKÞ
Tcoh

¼ MκNS=NB.
Parameter values are given in the text. (b) Error-probability
exponents for the SFG and FF-SFG receivers versus source
brightness, NS, with M is chosen to keep the QI target-detection
QCB at (top to bottom) 10−1, 10−2, or 10−3. Simulations run were
106 for QCB ¼ 10−3 and 105, otherwise.
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error-probability exponents of the SFG and FF-SFG
receivers with QI target-detection’s QCB as a function
of source brightness with M chosen to keep the QCB
constant at 10−1, 10−2, or 10−3. Increasing NS increases

NðKÞ
T therm

, so Fig. 2(b) shows that our receivers approach QCB
performance over a wide range of noise values.
Discussion.—We have presented a structure for achiev-

ing asymptotically optimum performance in QI target
detection. Compared to the Schur-transform approach to
optimum mixed-state discrimination, the components of
our FF-SFG and SFG receivers, albeit challenging, have
simpler realizations. In particular, the required SFG can be
implemented in an optical cavity or nonlinear waveguides
[60], and its K cycles can be combined on a photonic
integrated circuit [61–63]. Feed-forward operations have
been successfully employed to obtain improved perfor-
mance in the discrimination of coherent states [39–41],
mixed states [64], and entangled states [65]. Furthermore,
our receivers have other potential applications, including
optimum reception for the QI communication protocol
[66], and quantum state and channel tomography [67,68].
Three final points deserve mention. First, our receiver’s

slicing approach is analogous to that in [69], where it was
shown that slicing could be used to achieve the Holevo
capacity for classical information transmission over a pure-
loss channel. Second, recent work [70] has shown that QI
offers a great performance advantage in target detection in
the Neyman-Pearson setting, when the miss probability,
Prð ~hK ≠ hjh ¼ 1Þ, is to be minimized subject to a con-
straint on the false-alarm probability, Prð ~hK ≠ hjh ¼ 0Þ.
The optimum quantum measurement for Neyman-Pearson
detection, uðρ̂1 − ζρ̂0Þ for an appropriately chosen real-
valued ζ, is identical to that for minimum error-probability
discrimination between ρ̂1 and ρ̂0 when ζ ¼ Prðh ¼ 0Þ=
Prðh ¼ 1Þ. Thus, just as the Dolinar receiver can be
initialized to achieve the Helstrom bound for coherent-
state discrimination with unequal priors and, hence, for
Neyman-Pearson discrimination, so too can our FF-SFG
receiver for QI target detection. Finally, we note that the
implementation burden on our FF-SFG receiver can be
vastly reduced by replacing its feedforward stages with
feedback stages; i.e., we implement only one cycle and feed
back its optical outputs to its inputs while using its
measurement outputs to adjust its rk and εk values.
Running this feedback arrangement through K cycles then
yields the same output as the original feedforward setup but
with only three squeezers, one SFG stage, and two beam
splitters, instead of K times those numbers.
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