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We consider generic pure n-qubit states and a general class of pure states of arbitrary dimensions and
arbitrarily many subsystems. We characterize those states which can be reached from some other state via
local operations assisted by finitely many rounds of classical communication (LOCCN). For n qubits with
n > 3, we show that this set of states is of measure zero, which implies that the maximally entangled set is
generically of full measure if restricted to the practical scenario of LOCCN. Moreover, we identify a class of
states for which any LOCCN protocol can be realized via a concatenation of deterministic steps. We show,
however, that in general there exist state transformations which require a probabilistic step within the
protocol, which highlights the difference between bipartite and multipartite LOCC.
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Multipartite entanglement plays a crucial role in many
fields of physics [1]. This is particularly so if all the
correlations among the constituent systems result
from entanglement, which is the case for pure states.
The existence of these nonclassical correlations in both
the bipartite and multipartite cases have been pivotal in the
development of the quantum information theory. In this
context, there are many applications of pure multipartite
entanglement including quantum computation [2], metrol-
ogy [3], and quantum communication protocols [1,4].
Furthermore, the entanglement properties of multipartite
states has been proven successful in the study of condensed
matter physics like in, e.g., the identification of different
phases [5] and the development of numerical methods [6].
A deep understanding of entanglement is central to all these
investigations, and this has led to the development of the
entanglement theory, which aims at providing a solid
framework for its characterization, quantification, and
manipulation.
As the entanglement theory is a resource theory,where the

free operations are those which can be realized via local
operations assisted by classical communication (LOCC), the
investigation of the latter is essential in this theory.
This provides all possible protocols for entanglement
manipulation for spatially separated parties and induces
an operationally meaningful ordering in the set of entangled
states, which allows us to quantify and qualify entangle-
ment. Bipartite pure state entanglement is well understood
due to the fact that all LOCC transformations among
bipartite pure states can be easily characterized [7].
There, transformations under a larger class of operations,
the so-called separable operations (SEP), can always be
realized via LOCC [8]. Multipartite LOCC is far from being
that simple. In fact, it has been shown that infinitely many
rounds of communication might be necessary in certain

scenarios involving ensembles of states [9]. Note, however,
that to date there exists no example where infinitely many
rounds of communication are required for pure state trans-
formations. Further aggravating the matter, separable pure
state transformations have been identified which cannot be
realized via LOCC, even if infinitely many rounds are
utilized [10]. Hence, the investigation of the mathematically
much more manageable separable transformations leads to
necessary, but not sufficient, conditions for the existence of a
transformation among pure multipartite states via LOCC.
Other approaches in gaining insight into the complicated
structure of multipartite entanglement are based on local
unitary (LU) transformations [11], which do not alter the
entanglement contained in the state, and stochastic LOCC
(SLOCC) transformations [12]. Both of them define an
equivalence relation, namely, two n-partite states jΨi
and jΦi are LU (SLOCC)-equivalent if there exist
unitary (invertible) matrices Ai for i ∈ f1;…; ng such that
jΨi ∝ A1 ⊗ � � � ⊗ AnjΦi, respectively. However, these
notions cannot be utilized to establish any ordering among
the entanglement contained in the states as LOCC does.
Hence, despite the fact that the structure of LOCC maps is
mathematically very subtle [13–16], the understanding of
possible transformations under LOCC is necessary in order
to clarify the usefulness of different states and to quantify
entanglement, which can be done by any quantity which
does not increase under LOCC [1].
In Refs. [10,17,18], we generalized the notion of

maximal entanglement to the multipartite case by identify-
ing the minimal set of states, the maximally entangled set
(MES), which suffices to reach any other state via LOCC.
Moreover, the LOCC transformations among three- and
four-qubit and three-qutrit states have been investigated in
Refs. [10,17–20]. Here, we consider the more realistic
scenario of LOCC protocols consisting of finitely many
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rounds of communication, i.e., LOCCN. We investigate
such transformations among pure truly n-partite entangled
states, jΨi; jΦi ∈ Cd1 ⊗ � � � ⊗ Cdn , with di denoting the
local dimension of subsystem i, i.e., the rank of the
corresponding reduced state. We are interested in the case
where the final and initial states are in the same SLOCC
class [12]. That is, we investigate neither, for instance,
transformations from entangled four-qubit to entangled
three-qubit states where the fourth qubit factorizes nor
transformations where the local dimensions di differ
between the initial and the final state. Moreover, as we
are interested only in nontrivial transformations, i.e., not
LU transformations, we often refer by a state to a LU-
equivalence class. Every LOCC protocol can then be
described as follows. One party applies locally a measure-
ment on his system and sends the information about the
measurement outcome to the other parties, who then apply,
depending on this information, LUs to their systems. Such
rounds are concatenated until the transformation from the
initial to the final states is accomplished deterministically. It
is the dependency of the measurement on all the previous
measurement outcomes which makes LOCC so cumber-
some to handle, even if only finitely many rounds are
considered (see, e.g., [13–16]).
We investigate many SLOCC classes of states of

arbitrary numbers of parties and local dimensions. In
particular, for n-qubit states (n > 3) and three-qutrit states,
their union constitutes a generic set of states, i.e., of full
measure. That is, there, our results apply to all states but a
subset of measure zero. Despite the aforementioned diffi-
culties, we present here as our first main result a succinct
characterization of all states jΦi in these classes which are
reachable via LOCCN, i.e., for which there exists a state that
can be transformed (nontrivially, i.e., not with LUs) via
some LOCCN protocol into jΦi [21]. Moreover, this set is
of measure zero in the corresponding SLOCC class, which
allows us to show that n-qubit states with n > 3 are almost
never reachable. The reason why such a general result can
be derived is that the conditions for a state to be reachable
are very stringent, which implies that only very particular
states can be reached. In order to explain the other results
presented here, let us note that all LOCC transformations
among pure states (including infinitely many rounds)
studied so far can be realized via a particularly simple
protocol [10,17–20]. There, in each round the state is
transformed deterministically into an intermediate (or the
final) pure state. That is, for any measurement outcome the
system is in a pure state and all these states are LU-
equivalent. We call these protocols in the following all-
deterministic. As these results hold for various numbers of
subsystems and different local dimensions, one might
wonder whether every LOCC protocol can be divided into
deterministic steps (as is also the case in the bipartite setting
[22]). We prove here, however, as our second main result,
that this is not the case. In particular, we present an example

of a pure state transformation where a probabilistic step is
required (see Fig. 1). In contrast to that, we identify classes
of states for which indeed any protocol in LOCCN can be
divided into deterministic steps, which makes it particularly
easy to analyze them. Note that these results clearly show
the difference between multipartite and bipartite LOCC.
The outline of the remainder of the Letter is the

following. After presenting our notation, we define the
SLOCC classes which are considered here. We characterize
all states (in those SLOCC classes) which can be reached
via LOCCN and show that this set of states is of measure
zero for n-qubit states. Next, we investigate which states are
convertible, i.e., can be transformed into another state via
LOCCN. This result can be used to characterize all-
deterministic LOCCN protocols, to which any previously
known LOCC protocol belongs. After that we show,
however, that not any LOCCN protocol is of this simple
form by presenting a LOCCN protocol which is not
realizable via an all-deterministic transformation. We then
briefly discuss that an interesting, but aggravating, phe-
nomenon can occur, namely, that one party can unlock or
lock the power of the other parties. That is, one party can
enable or prevent the other parties to perform a determin-
istic step. Considering instances where this phenomenon
cannot occur, we identify a class of states for which
any LOCCN transformation can be realized via an all-
deterministic LOCCN protocol.
We denote throughout this Letter by jΨsi a n-partite state

whose local stabilizer SΨs
consists of finitely many LUs

[23]. That is, there exist only finitely many operators
S ¼ Sð1Þ ⊗ Sð2Þ ⊗ � � � ⊗ SðnÞ, with SjΨsi ¼ jΨsi [24].
Moreover, these operators are all unitary [25]. Here and
in the following, the superscript (i) refers to the systems on
which the operator is acting. It has been shown in Ref. [26]
that the stabilizer of a generic n-qubit state (n > 3) is finite.
Hence, such states can be written as gjΨsi, with g ¼⊗n

i¼1

gi ∈ G≡GLð2Þ⊗n and jΨsi as above. For qudit states,
some of the SLOCC classes also possess a representative

FIG. 1. The transformation from the state jΨi to jΦi is
impossible with an all-deterministic LOCCN. However, it be-
comes possible if party 1 performs a nondeterministic step,
transforming jΨi with probability p1 into jΨ1i and with
probability p2 into jΨ2i. Both states can then be transformed
deterministically into the final state jΦi. Note that this example is
in clear contrast to a bipartite state transformation, where any
transformation can be performed with an all-deterministic
LOCCN.
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which has only finitely many local symmetries. Moreover,
as, for instance, in the case of three qutrits, these SLOCC
classes can be generic, too [27]. All our results apply to any
SLOCC class which can be represented by a state jΨsiwith
SΨs

finite. The reason why the symmetries of jΨsi are so
important in these investigations becomes clear by noting
that any local operator which maps a state gjΨsi into a state
hjΨsi must be of the form h1Sð1Þg−11 ⊗ � � � ⊗ hnSðnÞg−1n ,
with S ∈ SΨs

. Hence, deciding whether a transformation is
possible (deterministically) depends very crucially on the
properties of the stabilizer. In the following, we choose
Gi ¼ g†i gi such that trðGiÞ ¼ 1 for any i and similarly
for Hi ¼ h†i hi.
Let us now show which states jΦi ∝ hjΨsi are reachable

via LOCCN (from a state jΨi ∝ gjΨsi).
Theorem 1.—A state jΦi ∝ hjΨsi is reachable, iff there

exists S ∈ SΨs
such that the following conditions hold up to

permutations of the particles: (i) For any i ≥ 2, ½Hi; SðiÞ� ¼
0 and (ii) ½H1; Sð1Þ� ≠ 0.
Proof.—Let us first show that the conditions in the

theorem are necessary and then construct the state jΨi
which can be transformed to jΦi.As the protocol is finite,
there has to exist a last step of the protocol. At this step,
there must exist a deterministic transformation from some
state jχi, which is obtained in one branch of the LOCC
protocol, to jΦi. As these two states need to be in the same
SLOCC class, we write jχi ∝ gjΨsi for some g ∈ G [28].
Without loss of generality, we assume that party 1 applies,
at this step, a measurement, which we describe by the
operators fAig, whereas all the other parties only apply
LUs. Note that, as the protocol is nontrivial, there must
exist at least two outcomes, which are not related to each
other by a unitary, i.e., A†

2A2∝A
†
1A1. Considering these two

outcomes, it must hold that ðA1 ⊗ 1ÞgjΨsi ¼ r1ð1 ⊗n
i¼2

UiÞjΦi and ðA2 ⊗ 1ÞgjΨsi ¼ r2ð1 ⊗n
i¼2 ViÞjΦi for some

local unitariesUi and Vi. The real numbers r1 and r2 can be
chosen strictly positive as Ai ⊗ 1jχi ¼ 0 implies, as jχi is
in the same SLOCC class as jΦi and therefore the reduced
states have full rank, that Ai ¼ 0. Using the symmetries of
jΨsi, the equations above are equivalent to

h−1ðA1 ⊗n
i¼2 U

†
i Þg ¼ r1S1; ð1Þ

h−1ðA2 ⊗n
i¼2 V

†
i Þg ¼ r2S2; ð2Þ

where S1; S2 ∈ SΨs
. Hence, we have

A1 ¼ rð1Þ1 h1S
ð1Þ
1 g−11 ; A2 ¼ rð1Þ2 h1S

ð1Þ
2 g−11 ; ð3Þ

gi ¼ rðiÞ1 UihiS
ðiÞ
1 ¼ rðiÞ2 VihiS

ðiÞ
2 ; ∀ i > 1: ð4Þ

Here, rj ¼
Q

ir
ðiÞ
j , for j ¼ 1, 2. Considering now the last

equations for g†i gi and using that hi is invertible, one easily

finds that rðiÞ1 ¼ rðiÞ2 ∀ i > 1 and therefore that condition
(i) in Theorem 1 is necessary for S ¼ S1S

†
2. Moreover, using

that A†
1A1∝A

†
2A2 we find that condition (ii) is necessary for

S ¼ S1S
†
2.The construction of the state jΨi ∝ gjΨsi and the

correspondingLOCCprotocolwhich transforms jΨi into jΦi
is now very simple. Choosing for i > 1 Gi ¼ Hi ¼
ðSðiÞÞ†HiSðiÞ, i.e., choosing gi ¼ Vihi ¼ WihiSðiÞ, for some
unitaries Vi and Wi, which have to exist as condition (i) is
equivalent to the condition that hiSðiÞðhiÞ−1 is unitary, and
G1 ¼ pH1 þ ð1 − pÞðSð1ÞÞ†H1Sð1Þ, for some 0 < p < 1
allowsus to reach thestatewith thefollowingLOCCprotocol.
Party 1 measures the positive operator-valued measure
(POVM) consisting of the measurement operators
ffiffiffiffi
p

p
h1g−11 and

ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p
h1Sð1Þg−11 . Depending on the outcome

of this measurement, all the other parties i apply either V†
i or

W†
i , respectively. ▪
Hence, once the symmetries of jΨsi are known, it is very

easy to decide whether a state is reachable via LOCCN or
not. For instance, consider jΨsi with symmetries σ⊗n

i ,
where σi denotes here and in the following the Pauli
operators. Then, due to Theorem 1, it is straightforward to
see that the state h1 ⊗ 1jΨsi is reachable for arbitrary h1.
However, the state h1 ⊗ h2 ⊗ 1jΨsi is not, if neither H1

nor H2 commutes with σi for some i. As mentioned before,
the considered SLOCC classes are generic for n > 3 qubit
states [26]. Hence, Theorem 1 characterizes (almost) all
reachable states there. Because of that and the fact that, for
almost all states hjΨsi, the operator h does not obey the
commutation relations stated in Theorem 1, we obtain the
following corollary, which we prove in Ref. [29].
Corollary 2.—The set of n-qubit states (n > 3) which

are reachable via a LOCCN protocol is of measure zero.
Note that this result applies also to all multipartite states

of higher local dimensions, as long as the considered
SLOCC classes are generic. This means that the MES
(under LOCCN) has full measure in this case. Let us now
investigate which states are nontrivially transformable to
another state, i.e., are convertible. We call a state convert-
ible via LOCCj if it can be converted by a single round of
LOCC, where the nontrivial measurement is performed by
party j and LUs are applied by the other parties.
Considering without loss of generality that party 1 applies
the measurement and using similar tools as in the proof of
Theorem 1, one can easily prove the following lemma [29].
Lemma 3.—A state jΨi ∝ gjΨsi is convertible via

LOCC1 iff there exist m symmetries Si∈SΨs
, with m > 1

andH ∈ BðH1Þ,H > 0 andpi > 0with
P

m
i¼1 pi ¼ 1, such

that the following conditions hold: (i) ½Gk;S
ðkÞ
i �¼0∀k>1

and∀i ∈ f1;…; mg and (ii)G1 ¼
P

m
i¼1 piðSð1Þi Þ†HSð1Þi and

H ≠ Sð1ÞG1ðSð1ÞÞ† for any S ∈ SΨs
fulfilling (i).

Note that the first party can apply measurement operators
fAi¼ ffiffiffiffiffi

pi
p

hSig−11 gmi¼1 with probabilities pi ¼ trðg†1A†
i Aig1Þ,
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where H ¼ h†h is such that the conditions in (ii) are
satisfied. Depending on the measurement outcome i, the

other parties apply the LUs UðkÞ
i defined by UðkÞ

i gk ¼
gkS

ðkÞ
i ∀ k > 1 to obtain h ⊗ g2 ⊗ � � � ⊗ gnjΨsi. These

unitaries exist due to condition (i).
Using Lemma 3, it is now straightforward to characterize

all possible all-deterministic LOCCN transformations,
which can be viewed as a generalization of the bipartite
transformations. All known LOCC transformations among
pure states are exactly of this kind. Moreover, we note that
the set of states in the MES (for LOCCN) which are
convertible via all-deterministic LOCCN can be then
characterized by simple conditions [29]. However, as we
show in the following by constructing an explicit example,
it turns out that all-deterministic transformations are not the
most general ones. That is, certain transformations can be
accomplished only by using an intermediate probabilistic
step (see Fig. 1). This result shows that the involved
structure of LOCC maps can be exploited to achieve pure
state transformations and exposes once again the difficulty
of a general characterization.
In order to provide the aforementioned example, we

consider the SLOCC class given by the L state of four
qubits [18,30]:

jLi ¼ 1
ffiffiffi
3

p ðjϕ−ijϕ−i þ eiπ=3jϕþijϕþi þ ei2π=3jψþijψþiÞ;

ð5Þ

where jϕ�i¼ðj00i�j11iÞ= ffiffiffi
2

p
and jψ�i ¼ ðj01i � j10iÞ=ffiffiffi

2
p

. The symmetries of this state are given by
SL ¼ ff1; U;U2g × fσig3i¼0g⊗4, where U ¼ ffiffiffiffiffiffi

iσy
p ffiffiffiffiffiffi

iσx
p

[18]. We will consider states of the form
g1 ⊗ g2 ⊗ 1 ⊗ 1jLi, which we denote in the following
by fg1;g2g, where gi denotes the Bloch vector of Gi with
gi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2þ gi · ~σ

p
. The above referred example is given

by the transformation fg1;g2g → fh1;h2g, where
fg1;g2g ¼ fðx; x; 2xÞ; ðx;−x; 0Þg and fh1;h2g ¼
f2ðx; x; xÞ; ðx; x;−2xÞg with x > 0 but small enough so
that the corresponding operators are well defined. Notice
that, since for i ¼ 1, 2 ½Gi; SðiÞ� ≠ 0 ∀ S ∈ SL ðS ≠ 1Þ,
Lemma 3 guarantees that the initial state cannot be
converted by an LOCCj protocol ∀ j, and, hence, any
deterministic transformation starting from this state neces-
sarily requires intermediate nondeterministic steps. The
corresponding protocol has two steps. First, party 1 imple-
ments a two-outcome POVM that leads to the intermediate
states h1 ⊗ g2 ⊗ 1 ⊗ 1jLi and h1σ3 ⊗ g2 ⊗ 1 ⊗ 1jLi by
measuring M1 ¼

ffiffiffiffiffiffiffiffi
3=4

p
h1g−11 and M2 ¼

ffiffiffiffiffiffiffiffi
1=4

p
h1σ3g−11

(which fulfills
P

iM
†
i Mi ¼ 1). Since ½H1; U� ¼ 0, both

intermediate states fulfill the premises of Lemma 3 so that
they can be now transformed by LOCC2 into the desired

state. For this, in the first branch of the protocol, party 2
measures M0

1 ¼
ffiffiffiffiffiffiffiffi
1=3

p
h2g−12 and M0

2 ¼
ffiffiffiffiffiffiffiffi
2=3

p
h2U2g−12

(which is again a valid measurement), leading to the states
h1 ⊗ h2 ⊗ 1 ⊗ 1jLi and h1 ⊗ h2U2 ⊗ 1 ⊗ 1jLi. For the
second outcome, parties 1, 3, and 4 additionally apply the
unitary U2, obtaining then fh1;h2g as well, since
½h1; U2� ¼ 0 and U2 ∈ SL. Analogously, in the second
branch of the protocol, party 2 measures M00

1 ¼ffiffiffiffiffiffiffiffi
1=3

p
h2σ3g−12 and M00

2 ¼
ffiffiffiffiffiffiffiffi
2=3

p
h2Uσ3g−12 . In the case of

the first outcome, parties 3 and 4 apply the unitary σ3, and,
in the case of the second, party 1 applies U and 3 and 4
apply Uσ3, obtaining again the state fh1;h2g. In Ref. [29],
we analyze further how these constructions arise and we
generalize them.
It is worth mentioning that multipartite LOCCN manipu-

lation allows for an interesting phenomenon that we name
locking or unlocking the power of other parties: It can be
that the action of some party prevents or allows the others to
perform deterministic nontrivial transformations. In
Ref. [29], we provide examples of this feature and analyze
general conditions on SΨs

that are necessary for unlocking
to be possible. Also, imposing further conditions on SΨs

allows us to find SLOCC classes where any possible
LOCCN transformation can be realized via an all-deter-
ministic transformation. An instance is the case SΨs

¼
fσ⊗n

i gi (see [29] for the proof). Moreover, for these classes
SEP (and, hence, also infinitely many round LOCC)
protocols are all-deterministic.
We have investigated LOCCN transformations among

pure states in certain SLOCC classes of arbitrary dimension
and system sizes. We characterized all reachable states in
Theorem 1. Moreover, we provided examples of SLOCC
classes where even any SEP transformation is all-deter-
ministic LOCCN. That is, in each step of a protocol a
deterministic LOCC transformation is performed. All these
transformations can then be characterized using Lemma 3.
However, we showed that there exist transformations
among pure states that require more elaborate LOCC
protocols which include nondeterministic intermediate
steps. This fact prevents the characterization of pure
state LOCCN transformations via Theorem 1 and
Lemma 3 from being complete. In summary, putting these
results together with previous investigations on LOCC
[10,17,18], the following picture emerges. While for
bipartite pure state transformations we have that all-
deterministic LOCCN ¼ LOCCN ¼ LOCC ¼ SEP, in the
multipartite case we showed that all-deterministic
LOCCN⊊LOCCN and LOCC⊊SEP. It remains open
whether LOCCN ¼ LOCC for pure states, which would
be an interesting topic for future research. Our results also
show that exact LOCC transformations among pure states
are rarely possible (cf. Corollary 2). This suggests further
work in order to develop new tools to investigate approxi-
mate transformations.
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