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We introduce an intermediate quantum computing model built from translation-invariant Ising-
interacting spins. Despite being nonuniversal, the model cannot be classically efficiently simulated unless
the polynomial hierarchy collapses. Equipped with the intrinsic single-instance-hardness property, a single
fixed unitary evolution in our model is sufficient to produce classically intractable results, compared to
several other models that rely on implementation of an ensemble of different unitaries (instances). We
propose a feasible experimental scheme to implement our Hamiltonian model using cold atoms trapped in a
square optical lattice. We formulate a procedure to certify the correct functioning of this quantum machine.
The certification requires only a polynomial number of local measurements assuming measurement
imperfections are sufficiently small.
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A universal quantum computer is believed to be able to
solve certain tasks exponentially faster than the current
computers [1,2]. Over the past several decades, there has
been tremendous progress in both theoretical and exper-
imental developments of a quantum computer. In theory,
pioneering quantum algorithms, including Shor’s factoriza-
tion [3] and an algorithm for linear systems of equations [4],
achieve exponential speedup comparedwith the best-known
classical algorithms. However, formidable experimental
challenges still lie ahead in building a universal quantum
computer large enough to demonstrate quantum supremacy.
This calls for simpler tasks to demonstrate exponential
quantum speedup without the need for a universal machine.
Several intermediate computing models have been

developed recently for this purpose. Examples include
boson sampling [5], quantum circuits with commuting
gates (IQP) [6,7], sparse and “fault-tolerant” IQP [8,9],
the one-clean-qubit model [10,11], evolution of two-qubit
commuting Hamiltonians [12], quantum approximate opti-
mization algorithm [13], and random or universal quantum
circuit [14,15]. These models fall into the category of
sampling problems: the task of simulating the distribution
sampled from the respective quantum system is believed to
be classically intractable. In particular, if a classical
computer can efficiently simulate the distribution to multi-
plicative errors, the polynomial hierarchy, a generalization
of P and NP classes, will have to collapse to the third level
[16,17], which is believed to be unlikely in complexity
theory. Several experiments (e.g. [20,21]) have been
reported for realization of boson sampling in small quan-
tum systems using photons. However, the system size is
still limited, which prohibits demonstration of quantum
supremacy beyond classical tractability.
In this paper, we report three advancements towards

demonstration of exponential quantum speedup in

intermediate computing models. First, we formulate a
new sampling model built from translation-invariant
Ising-interacting spins, with strong connection to simula-
tion of natural quantum many-body systems [22–25]. Our
model only requires nearest-neighbor Ising-type inter-
actions. The state preparation, the Hamiltonian, and mea-
surements are all constructed to be translation invariant.
Similar to Refs. [5,7], we prove the distribution sampled
from our model cannot be classically efficiently simulated
based on complexity theory results under reasonable
conjectures [6,26–28]. An additional desirable feature of
our model, which we call the “single-instance-hardness”
property, is that a single fixed circuit and measurement
pattern are sufficient to produce a classically hard distri-
bution once the system size is fixed. This differs from
typical sampling problems, where an ensemble of instances
(unitaries) with a large number of parameters is demanded
for the hardness result to hold [5–15]. This feature offers a
significant simplification for experiments since proof of
quantum supremacy for this model requires implementa-
tion of only a single Hamiltonian and measurement pattern
instead of a range of different realizations (typically
an exponential number or even an infinite number).
Reference [5] also discussed the single-instance-hardness
possibility in an abstract quantum circuit language, but no
explicit circuit has been given thus far. Second, we propose
a feasible experimental scheme to realize our model with
cold atoms in optical lattices. The state preparation,
engineering of time evolution, and measurement techniques
are achievable with the state-of-the-art technology. Unlike
photonic systems, cold atomic systems are much easier to
scale up and reach a system size intractable to classical
machines. Finally, we devise a scheme to certify our
proposed quantum machine based on extension of the
techniques developed in Refs. [29,30]. Certification of
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functionality is critically important for a sampling quantum
machine as a correct sampling is hard to be verified. Our
certification scheme only requires a polynomial number of
local measurements, assuming the measurement imperfec-
tions are sufficiently small.
Before introducing our model, let us make more precise

the two different error requirements used in this paper.
Suppose the distribution fqxg is sampled from the quantum
system with qx being the probability of measuring the result
x. Simulating fqxg to multiplicative errors translates to
finding another distribution fpxg such that

∀x; jpx − qxj ≤ γqx ð1Þ
with γ < 1=2. This requirement seems too stringent for a
classical sampler [5,6]: even the quantum device may not
achieve such a physically unrealistic precision. A more
sensible choice is the variation distance error [5,7,31]X

x

jpx − qxj ≤ ϵ: ð2Þ

Other than physical motivation, another reason to use this
quantification of error lies in the equivalence between
search and sampling problems under the variation distance
bound [32]: the separation between classical and quantum
samplers under this error requirement will permit the
quantum device to solve classically intractable search
problems [5]. This will have broad practical applications
due to the ubiquity of search problems. For our Ising spin
model, we will prove that the distribution produced by the
quantum sampler can be certified by local measurements to
variation distance errors, assuming the measurement imper-
fections are sufficiently small.
Our model can be regarded as a special type of IQP with

a constant circuit depth. A general IQP [6,7] consists
of Ising interactions between any pairs of spins and
with varying strengths, while the sparse IQP [9] has
Oð ffiffiffi

n
p

lognÞ depth. Note that we are able to achieve such
a low depth while maintaining classical hardness with
variation distance errors [Eq. (2)] because we use a different
complexity conjecture of average-case hardness.
Reference [8] proposed another type of IQP in constant
circuit depth on the Raussendorf-Harrington-Goyal (RHG)
lattice [33]. In their model, the classical hardness result is
guaranteed with multiplicative errors under some local
noise below a threshold. Their Hamiltonian is also trans-
lation-invariant but the measurements are not. Thus, this
model and the general IQP do not have the single-instance-
hardness property. The general interactions in IQP and the
three-dimensional structure of the RHG lattice may be
difficult to realize in experiments.
Translation-invariant Ising model.—Our main construc-

tion is based on measurement-based quantum computing
models [34–36]. We first introduce a translation-invariant
nonadaptive measurement-based quantum computation
model with only one measurement basis required. With

postselection, we show that it can simulate universal quantum
computation. Next, we reinterpret the measurement-based
model as a sampling model based on quantum simulation of
two-dimensional (2D) spins with translation-invariant Ising
interactions and local magnetic fields. It has been known that
if a samplingmodel with postselection can simulate universal
quantum computation, it will be hard to simulate classically
with multiplicative error bounds unless the polynomial
hierarchy collapses to the third level [6,10,12]. We therefore
conclude that our quantum Ising model will be classically
intractable if the polynomial hierarchy does not collapse [17].
Consider the brickwork state shown in Fig. 1(a), which

has been used for universal blind quantumcomputation [37].
Each circle represents a qubit prepared in the state
jþi ¼ ðj0i þ j1iÞ= ffiffiffi

2
p

. A line connecting two neighboring
circles denotes a controlled-Z operation on the qubits.
As illustrated in Fig. 1(b), a measurement on one qubit in
X basis with measurement result s implements a gate
HZsRzðθÞ, where H is the Hadamard gate and RzðθÞ ¼
e−iθZ=2 denotes a rotation on a single qubit. Reference [37]
proved that the model supports universal quantum compu-
tation given proper rotation angles θ and measurement
results s (see Supplemental Material [17] for details). An
important attribute of this model is that the graph structure
and measurement patterns are independent of the compu-
tation.We further improve themodel bymaking the angles θ
translation invariant. In terms of the sampling problem, this
modification gives rise to the advantage of the single-
instance-hardness property. It differs from other existing
sampling problems, such as boson sampling, wherein an
average over random quantum circuits is needed for the
classical hardness result to hold.
To fix the angle pattern, we use seven qubits to replace

one white circle [Fig. 1(c)]. The primary goal is to encode

(a)

(b) (c)

FIG. 1. (a) The brickwork state. Each circle represents a jþi
state and each line denotes a CZ operation. (b) Propagation of the
gate by measuring a qubit. (c) Each white circle with varying
rotation angles is replaced by seven physical qubits with fixed
rotation angles. The variation in the overall angle is encoded into
different measurement outcomes.
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rotation angle values into measurement outcomes, so that
measurement postselection effectively realizes all neces-
sary rotation angles. The basic building block is

HZsHRz

�
−
θ

2

�
HZsHRz

�
θ

2

�
¼ Rs

zðθÞ ð3Þ

which can be realized by measuring four connecting qubits
in X basis with rotation angles θ=2; 0;−θ=2; 0 and post-
selecting the results to be 0; s; 0; s. This equality furnishes a
mechanism to conditionally perform the rotation RzðθÞ
based on the measurement result s. Because of the
Solovey-Kitaev theorem [38], it is sufficient to implement
HRzðkπ=4Þ; k ∈ f0;…; 7g for universal computation [17].
Writing k ¼ s1s2s3; si ∈ f0; 1g in binary form, we have

Zs3HRz

�
kπ
4

�
Zs0

3 ¼ Zs3HRs1
z ðπÞRs2

z

�
π

2

�
Rs3
z

�
π

4

�
Zs0

3

¼ HRz

�
−
π

8

�
HZs3HRz

�
π

4

�
HZs2

×HRz

�
−
π

4

�
HZs2HZs1þs0

3Rz

�
π

8

�
:

The extra term Zs3 can be absorbed into the following gate
and Zs0

3 is left from the previous gate. Postselecting the
measurement results as s1 ⊕ s03; s2; 0; s2; 0; s3; 0 with rota-
tion angles π=8; 0;−π=4; 0; π=4; 0;−π=8, we can imple-
ment the gates HRzðkπ=4Þ with k ¼ s1s2s3.
We now recast the nonadaptive measurement-based

computation model as a sampling problem. A distribution
can be sampled by measuring each spin in Fig. 1 in the X
basis. The above procedure is only used to prove the
universality of the nonadaptive measurement-based model
with a fixed circuit under postselection. We remark that
neither postselection nor adaptive measurements are
required for sampling the distribution. The circuit can be
implemented by a unitary time evolution under a local
Hamiltonian

H ¼ −
X
hi;ji

JZiZj þ
X
i

BiZi ð4Þ

starting from the initial state jþi⊗m×n, withm × n being the
number of spins. The second term imprints local rotation
angles since e−iBiZi ¼ RzðθiÞ, where Bi ¼ θi=2 character-
izes the local Zeeman field strength on spin i. The evolution
time and the reduced Planck constant ℏ are set to unity. The
first term performs the controlled-Z operations with
J ¼ π=4, where hi; ji represents nearest-neighbor pairs
connected by a line in Fig. 1. This can be seen as

CZij ¼ eiπj1ih1ji⊗j1ih1jj ¼ eiπ=4ðIi−ZiÞ⊗ðIj−ZjÞ

¼ eiπ=4e−iπ=4Ii⊗Zje−iπ=4Zi⊗Ijeiπ=4Zi⊗Zj : ð5Þ

The two local magnetic field terms in the equation above can
be absorbed into rotation angles, without changing Fig. 1(c)

(see Supplemental Material [17]). The distribution sampled
from this fixed 2D Ising model cannot be simulated by a
classical computer in polynomial time to multiplicative
errors unless the polynomial hierarchy collapses.
Implementation proposal with cold atoms.—The

Hamiltonian in Eq. (4) exhibits a few properties that make
it amenable for experimental implementation. First of all, it
only consists of commuting terms, so in experiment one can
choose to break up the Hamiltonian and apply simpler terms
in sequence. Second, the state preparation, the Hamiltonian
and measurements are all translation invariant. This may
greatly simplify the implementation for setups that can
engineer the required unit cell. Another merit of our model
originates from the single-instance-hardness feature. It
ensures the sampling distribution after a single fixed unitary
operation is already hard to simulate classically.
Here, we put forward a feasible experimental scheme

based on cold atoms in optical lattices. A major difficulty
arises from the special geometry required in the brickwork
state. We propose to circumvent this problem by starting
from the 2D cluster state (square lattice geometry) and
reducing it to the brickwork state. In theory, this can be
achieved by the “break” and “bridge” operations with
measurement postselection as shown in Fig. 2 (see
SupplementalMaterial [17] formore details). In experiment,
postselection is again unnecessary with regard to sampling,
but one incurs an additional cost of measuring in bothX and
Z basis (the measurement pattern is still translation invariant
though). As a by-product, this procedure offers a concrete
single-instance-hardness protocol to produce classically
nonsimulatable distribution from the cluster state.
A complete experimental procedure is as follows. First,

create a Mott-insulator state of cold atoms in 2D optical
lattices with a central core of unit filling. One atom with
two relevant atomic levels (e.g., jF ¼ 1; mF ¼ −1i and
jF ¼ 2; mF ¼ −2i hyperfine levels of 87Rb atoms) can be
trapped in each site forming a square lattice of qubits. A 2D
cluster state can be created in a single operational step by
controlled collisional interaction [39,40]. The basic idea
involves entangling neighboring atoms by spin-dependent
transport together with controlled on-site collisions, which
has been realized in experiment [40]. After generating the

FIG. 2. Break and bridge operations. Qubit 0 is first rotated by
Rzðπ=2Þ before measured in the Z and X basis, respectively, to
perform the break and bridge operations.
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cluster state, one needs to impose the rotation angle pattern
onto each qubit. This requires the ability to address
individual atoms with diffraction-limited performance.
Single-site addressing is currently one of the state-of-
the-art quantum control techniques in cold atom experi-
ments [41,42]. In particular, by using a digital micro-mirror
device, it is possible to engineer holographic beam shaping
with arbitrary amplitude and phase control [42]. To imprint
the individual phases, one can make use of spin-dependent
ac Stark shifts [41] with beam amplitude patterns given by
the rotation angles. The amplitude hologram controls the
strength Bi and realizes the second term in the Hamiltonian
in Eq. (4). Finally, spin measurements can be performed on
each site, with single-site-resolved imaging techniques
[43,44]. Because some spins have to be measured in the
Z basis, they should be rotated by individual addressing
techniques before all atoms can be measured in the X basis.
Simulation and certification with variation distance

errors.—So far, we have shown that our Ising spin model
is classically intractable with multiplicative error bounds.
Similar to what have been attained in boson sampling [5]
and IQP [7], we can also prove classical hardness to
variation distance error bounds if we assume the “worst-
case” hardness result can be extended to “average-case.”
More specifically, let us define the partition function of

Hx ¼ Hþ π

2

X
i

xiZi; where xi ∈ f0; 1g ð6Þ

to be Zx ¼ trðe−βHxÞ, setting the imaginary temperature
unit as β≡ 1=kBT ¼ i. In the Supplemental Material [17],

we prove that approximating jZxj2=2mn by gjZxj2=2mn to a
mixture of multiplicative and additive errors such that���� gjZxj2

2mn −
jZxj2
2mn

���� ≤ 1

polyðnÞ
jZxj2
2mn þ ϵ

δ
½1þ oð1Þ� ð7Þ

with ϵ=δ < 1=2 is #P-hard in the worst case. Our classical
intractability result requires lifting the #P-hardness of the
estimation from the worst case to the average-case: picking
any 1 − δ fraction of instances x, it is still #P-hard. This
conjecture is similar to the one used in Ref. [7] except that
they reduced the mixture of errors to simply multiplicative
errors. All the known classically intractable quantum
sampling models with variation distance errors require a
similar average-case complexity conjecture.
Thus, with reasonable assumptions, our Ising spin model

is also classically intractable with variation distance
bounds. Using techniques similar to those in
Refs. [29,30], we can in addition certify the correct
functioning of a quantum device, with only a polynomial
number of local measurements. Suppose fq0xg is the
distribution sampled from our quantum device with the
final state ρ0 (state before measurement); the ideal ones are
denoted as fqxg and ρ. The total variation distance between
distributions fqxg and fq0xg can be bounded by [1]

X
x

jqx − q0xj ≤ Dðρ; ρ0Þ; ð8Þ

where Dðρ; ρ0Þ ¼ trðjρ − ρ0jÞ=2 is the trace distance
between states ρ and ρ0. Hence, if we can bound the trace
distanceDðρ; ρ0Þ < ϵ, we can also bound the total variation
distance. Note, however, this does not allow us to estimate
qx in experiment: statistical errors always kick in to thwart
any polynomial-time efforts to estimate the distribution due
to the exponential suppression of some qx. We bypass
statistical errors by assuming the correctness of quantum
mechanics. To sample from fq0xg in experiment though,
measurement imperfections may cause deviations in varia-
tion distance. However, if measurement imperfections on
each spin are local and bounded by O(ϵ=ðmnÞ) [17], we
can still correctly certify the quantum device. Below, we
show how to bound Dðρ; ρ0Þ by a polynomial number of
local measurements.
As a graph state, the brickwork state in Figs. 1(a) and

1(c) is the unique ground state of the 4-local Hamiltonian

Hbrickwork ¼
X
i

I − Xi
Q

j∈neighbor ofiZj

2
: ð9Þ

Each qubit i is connected to at most three neighboring ones,
and the energy gap from the ground state is 1. The ideal
state ρ is the brickwork state acted by some single qubit
rotations RzðθiÞ. It is therefore the unique ground state of
the Hamiltonian

H0
brickwork ¼

Y
i

RzðθiÞHbrickwork

Y
j

R†
zðθjÞ

¼
X
i

I − RzðθiÞXiR
†
zðθiÞ

Q
j∈neighbor ofiZj

2
:

This Hamiltonian is still 4-local, with ground state energy
gap 1. Using the weak-membership quantum state certif-
ication protocol in Ref. [29], one can measure each local
term of H0

brickwork by a polynomial number of times to
obtain a good estimation of hH0

brickworki averaged over ρ0.
The estimation will be efficient due to Hoeffding’s bound
and the finite norm of each local term. Since the ground
state energy gap is constant, hH0

brickworki > 0 implies a
finite component of excited states is present in ρ0.
Conversely, a small hH0

brickworki will be able to bound
Dðρ; ρ0Þ. More quantitatively, we show in the Supplemental
Material [17] that with confidence level 1–2−OðrÞ, using
Oðm2n2r=ϵ4Þmeasurements on each local term is sufficient
to certify

P
xjqx − q0xj ≤ ϵ, provided the measurement

imperfections on each spin are bounded by O½ϵ=ðmnÞ�.
Similar hardness and certification results hold if we start
from the cluster state as in our experimental proposal [17].
In that case, 5-local measurements are needed.
The IQP certification protocol developed in Ref. [29]

requires a much stronger quantum simulator than the IQP
simulator itself since they need to generate all the history
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states [45]. In contrast, our certification protocol only
requires preparing the state ρ0 itself. This is relevant in
light of demonstrating quantum supremacy [46] using
practical quantum many-body systems, instead of resorting
to a universal quantum simulation device.
Discussion.—In summary, we have introduced a trans-

lation-invariant Ising spin model and shown that it is
classically intractable unless the polynomial hierarchy
collapses. Because our average-case conjecture bypasses
the anticoncentration property used in Refs. [5,7,9], the
classical simulability result under constant-strength local
noise [9] may not apply to our model. Whether our model is
robust to noise requires further analysis. There is also a
natural connection between our model and sampling
models of random quantum circuits such as the one in
Ref. [14]: measurement on qubits in the first n − 1 columns
in our model corresponds to choosing one instance of a
random circuit due to the relation between our model and
measurement-based quantum computing. With the advanta-
geous single-instance-hardness property, the amenability to
experimental implementation and certification of the quan-
tum machine, we develop a full picture of using our model
to demonstrate quantum supremacy. This may shed light on
the likely exponential gap in computational power between
a classical and a quantum machine.
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