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We investigate the response of dense hard sphere glasses to a shear strain in a wide range of pressures
ranging from the glass transition to the infinite-pressure jamming point. The phase diagram in the density-
shear strain plane is calculated analytically using the mean-field infinite-dimensional solution. We find
that just above the glass transition, the glass generically yields at a finite shear strain. The yielding transition
in the mean-field picture is a spinodal point in presence of disorder. At higher densities, instead, we find
that the glass generically jams at a finite shear strain: the jamming transition prevents yielding. The shear
yielding and shear jamming lines merge in a critical point, close to which the system yields at extremely
large shear stress. Around this point, highly nontrivial yielding dynamics, characterized by system-
spanning disordered fractures, is expected.
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Introduction.—The response of glasses to a shear strain is
extremely complex and has always been the subject of much
interest for fundamental and technological reasons [1–5].
While at small enough strains, the solid responds elastically,
at moderate strains, the response is characterized by small
intermittent drops of the shear stress. At larger strains, the
stress drops abruptly when the glass yields. Above yielding,
the stress remains approximately constant upon increasing
strain, and the system flows [4,5]. For soft interaction
potentials, it has been established that both low-stress inter-
mittency and large-stress flow are due to “plastic” events at
which small regions of the material—called “shear trans-
formations”—fail under stress [2,4,6,7]. The energy relaxed
by the failure is propagated elastically through the system,
leading to failure in other regions. The stress-strain curves can
be well described in the flow regime by elasto-plastic models,
which describe mesoscopically the coupling between failing
plastic regions [8–11], and the plastic regions themselves have
been identified quite precisely in numerical simulations [6,7].
The situation is quite different for dense hard sphere

glasses, which are good models of colloidal and granular
glasses. These solids, due to the hard sphere constraints,
are characterized by a critical “random close packing” or
“jamming” density at which a rigid isostatic network of
particle contacts emerges, inducing a divergence of the
pressure [12–14]. Around the jamming point, due to the
emergent contact network, perturbing a particle leads to a
macroscopic rearrangement of the whole solid [15–17]:
continuum elasticity breaks down [18–21], and solid
dynamics are characterized by system-spanning avalanches
during which the system relaxes along strongly delocalized
soft modes [21–23]. Clearly, in this regime the “shear
transformations” picture becomes inappropriate.
The aim of this Letter is to characterize the response of

a dense hard sphere glass to a static shear strain (i.e., in the

regime where the solid responds by a static stress, without
flowing) all the way from the glass transition to the
jamming regime, within a mean-field approach. We find
that at lower densities, slightly above the glass transition,
the hard sphere glass responds in a way similar to soft
particle glasses: an elastic regime is followed by an
intermittent regime before the system yields (“shear
yielding”). At larger densities, close to jamming, the
situation is radically different. Before yielding, a jamming
transition happens due to shear: at the transition, a rigid
network of contacts is formed and the pressure diverges
(“shear jamming”). The shear jamming transition is in
the same universality class of the jamming transition at
zero shear [24,25], and it is characterized by nontrivial
critical exponents that appear in the interparticle force and
gap distributions [15,26,27]. Most importantly, the shear
yielding and shear jamming lines merge in a critical point.
Around this point, because the system yields at extremely
large (diverging) pressure and shear stress in a regime of
incipient jamming, we expect highly nontrivial yielding
dynamics, characterized by system-spanning disordered
fractures.
Glass preparation protocol.—We consider a system ofN

identical d-dimensional hard spheres in the thermodynamic
limit at constant number density ρ and volume fraction φ.
We consider the limit d → ∞, with constant φ̂ ¼ 2dφ=d, in
which the liquid and glass properties can be computed
exactly within the mean-field random first order transition
scenario [28,29]. For hard spheres, the infinite dimensional
limit usually provides qualitatively good predictions for the
phase diagram of low-dimensional systems [29], especially
around jamming [26], and finite-dimensional effects can
be studied through numerical simulations [27,30]. Also, for
d > 3, polydispersity is not needed, as monodisperse hard
spheres are a very good glass-forming system [31,32].
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During a slow cooling of a liquid, the relaxation time
scale ταðφ̂Þ becomes extremely large around the mode-
coupling density φ̂d, but one can still equilibrate up to quite
larger values of φ̂, either by brute force [33] or by means of
smart numerical algorithms [34–37] and smart experimen-
tal protocols [38]. Once equilibration at some φ̂g > φ̂d has
been achieved, one can focus on time scales τexp ≪ ταðφ̂gÞ
in such a way that the system remains confined in the glass
state selected in equilibrium at φ̂g.
In the mean-field limit d → ∞, the liquid relaxation time

diverges above φ̂d, and the dynamics is completely arrested
[28,39,40]. The separation of time scales thus becomes
very sharp as τexp ≪ ταðφ̂gÞ → ∞. The “state following”
formalism is designed to describe this regime [41–43] in
which a typical equilibrium configuration selects a long-
lived glass basin, which is then adiabatically followed upon
increasing the density φ̂ ≥ φ̂g and applying a shear strain γ
[29,44,45]. In particular, the method gives the reduced
pressure p ¼ βP=ρ and shear stress σ ¼ βΣ of the glass.
The pressure-density equation of state in absence of

shear has been studied in [44,45] (Fig. 1). We focus on a
liquid compression that remains in equilibrium until φ̂g ¼
8 > φ̂d ≈ 4.8 (this is representative of a typical situation),
and we follow the corresponding glass in a restricted
equilibrium. This glass undergoes a Gardner phase tran-
sition to a marginally stable state [26,29,44,45], and then

jams at a density φ̂j ≈ 10. The phase diagram of Fig. 1
qualitatively agrees with 3d numerical simulations [37].
Stress-strain curves.—The glass prepared at φ̂g is first

adiabatically compressed to φ̂ > φ̂g, and then a shear
strain γ is applied. At the replica symmetric level [46],
the glass-free energy fgðγ; φ̂;Δ;ΔrÞ can be exactly com-
puted in d → ∞ as a function of two order parameters [44]:
Δ is the mean square displacement (MSD) in the glass
state at ðφ̂; γÞ, and Δr is the relative MSD of a typical
configuration of the glass at ðφ̂g; γ ¼ 0Þ and a typical
configuration of the same glass once followed up to ðφ̂; γÞ
(see [44] for the precise mathematical definition). Both are
obtained by setting the derivatives of fg to zero. OnceΔ,Δr

are determined, the average reduced pressure p and average
stress σ are derivatives of fg, with respect to φ̂ and γ,
respectively.
All the four quantities p, σ, Δ, and Δr are reported in

Fig. 2 as functions of γ for several values of φ̂. We observe a
different behavior at lower densities close to φ̂g ¼ 8 and at
higher densities close to φ̂j ≈ 10. For lower φ̂, there is first a
linear elastic regime σ ∼ μγ, followed by a stress overshoot
before the system finally yields at γyðφ̂Þ. At the mean-field
replica-symmetric level, the yielding point is defined by the
fact that stress, pressure, Δ, and Δr display a square-root
singularity; e.g., p − pyðφ̂Þ ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γyðφ̂Þ − γ
p

because yield-
ing is akin to a spinodal: the solution of the stationarity
equations for Δ, Δr merges with another unphysical
solution and disappears in a bifurcationlike manner.
Equivalently, the square-root singularity is due to the
vanishing of a longitudinal mode λL ∝ d2fg=dΔ2

r at γyðφ̂Þ.
It also implies that there is a diverging susceptibility at
γyðφ̂Þ, related to the fluctuations of Δr: Δr∶χL ∼ hΔ2

ri−
hΔri2 ∝ 1=λL. For higher φ̂, instead, we observe that
pressure and stress increase fast and both diverge at a
shear jamming point γjðφ̂Þ, where Δ → 0 and Δr remain
finite.
Phase diagram.—In Fig. 3, the shear yielding line γyðφ̂Þ

and the shear jamming line γjðφ̂Þ are reported in the ðφ̂; γÞ
plane for φ̂g ¼ 8. We observe a re-entrant shear jamming
line moving to lower densities for increasing γ. The shear
yielding line γy decreases upon increasing φ̂. It is possible
to show analytically that the two lines merge at a critical
point ðφ̂c; γcÞ at which the system is both jammed (because
Δ ¼ 0, p ¼ ∞, σ ¼ ∞) and yielding because the longi-
tudinal mode vanishes indicating an instability of Δr
(which remains finite at the critical point, but has infinite
derivative). Note that beyond the yielding point, the solid
phase is unstable and the systems starts to flow: a fixed
stress σ corresponds to a finite shear rate _γ. In this regime,
the state following formalism is not appropriate (both Δr
and Δ are formally infinite), and a fully dynamical treat-
ment is needed, which goes beyond the scope of this Letter.
We also computed the phase diagram for different values of
φ̂g (not shown). We find that the critical density φ̂c moves

FIG. 1. Inverse reduced pressure d=p versus packing fraction
φ̂ ¼ 2dφ=d (both scaled to remain finite for d → ∞) during a
slow compression [44,45]. The liquid EOS is d=p ¼ 2=φ̂. The
dynamical transition φ̂d is marked by a black dot. We focus on a
liquid slowly compressed up to φ̂g ¼ 8 (blue full circle). From
that point on, the system is followed in a restricted equilibrium,
confined to the glass state (full blue line). At high pressure,
the glass state becomes marginally stable. Jamming is reached
around φ̂j ≈ 10. The thick lines indicate the specific glass we
follow in this paper. Other glasses corresponding to different φ̂g

(different compression rates) are plotted with thinner lines.
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towards φ̂j upon decreasing φ̂g, which implies that the
shear jamming line shrinks and eventually disappears for
poorly equilibrated glassy states with φ̂g ≈ φ̂d.
Marginal stability.—As previously found in [44,45], the

replica symmetric solution used to compute the results of
Fig. 2 becomes unstable in a region of the phase diagram
delimited by theGardner transition line γGðφ̂Þ. Beyond this
line, the order parameterΔ becomes a functionΔðxÞ defined
for x ∈ ½0; 1�, and the glass-free energy is a functional
fg½γ; φ̂;ΔðxÞ;Δr�. The resulting full replica symmetry break-
ing solution [46] is characterized bymarginal stability: one of
the derivatives of the free energy (the replicon mode) is
identically vanishing in the marginally stable phase, leading
to a diverging susceptibility and the breakdown of standard
elasticity [20,29]. The function ΔðxÞ and Δr are determined
by setting the (functional) derivatives of fg to zero. Although
wedid not solve the resulting equations numerically (see [45]

for a computation of the stress-strain curves at φ̂g), the phase
diagram remains qualitatively similar to Fig. 3. Indeed,
analytically, we can show the following. (i) Shear jamming
is characterized by the vanishing of Δð1Þ, the self-MSD of
the glass states,which induces a divergence of pressurep and
stress σ. On the shear jamming line, the critical properties
are the same of the jamming point at zero strain [26]: the
interparticle force and gap distributions display power-law
behavior, with nontrivial exponents that are constant along
the shear jamming line. (ii) Shear yielding is still charac-
terized by the vanishing of λL ∝ d2fg=dΔ2

r , which induces a
divergence of the fluctuations of Δr. However, the critical
properties on the shear yielding line remain to be understood.
(iii) The two lines merge at a critical point where both
Δð1Þ ¼ 0 and λL ¼ 0.
Comparison with numerics and experiments.—Many

experimental and numerical works have studied both shear

(a) (b)

(c) (d)

FIG. 2. Applying adiabatically a shear strain γ on a glass prepared at equilibrium at φ̂g ¼ 8 and adiabatically compressed to
φ̂ ∈ ½φ̂g; φ̂j�. The black dots along the lines represent the Gardner transition. (a) Inverse reduced pressure d=p≡ p̂−1 vs γ. At lower φ̂,
the pressure is finite until the system yields at γyðφ̂Þ. At higher density, the pressure diverges at the shear jamming point γjðφ̂Þ.
(b) Inverse of the reduced shear stress σ̂−1 ≡ d=σ vs γ. The behavior is very similar to the pressure. At lower φ̂, the stress overshoots
before yielding. At higher φ̂, the stress diverges at γj without any overshoot. The inset shows the behavior of σ̂ vs γ in log scale. (c) The
glass MSD Δ vs γ. At lower φ̂, Δ remains finite at yielding. At higher φ̂, Δ vanishes at shear jamming. (d) The MSD Δr between the
initial equilibrium configuration at φ̂g and the one at ðφ̂; γÞ. At lower φ̂, Δr remains finite and displays a square-root singularity at
yielding, such that dΔr=dγ → ∞ for γ → γy. At higher density, Δr remains finite at shear jamming with no singularity.

PRL 118, 038001 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

20 JANUARY 2017

038001-3



yielding and shear jamming. In particular, simulations of
athermal systems [25,47–51] and experiments on granular
materials [52–54] found a re-entrant shear jamming line.
The phase diagram in our Fig. 3 holds for a specific

protocol: a thermal system that is prepared in a well-
equilibrated initial state (φ̂g > φ̂d) to which compression
and shear strain are applied. In a systematic study of a
(frictionless) athermal system [25], it has been found that
the re-entrance of the shear jamming line is a finite size
effect and disappears when N → ∞. There are two possible
explanations for this difference. First, it could be due to the
lack of initial equilibration of the samples used in [25],
which are prepared by quenching instantaneously from
infinite temperature: this is consistent with our finding that
poorly equilibrated thermal systems do not display shear
jamming. Also, while for thermal hard spheres (any T > 0),
entropic forces stabilize the solid phase in the region
delimited by the shear yielding and shear jamming lines
in Fig. 3, athermal systems (T ¼ 0) below jamming are
not rigid (at least for small γ) because both the pressure
P ¼ Tp and the stress Σ ¼ Tσ vanish identically at T ¼ 0.
It is thus possible that they have very different dynamics
upon application of shear strain [55], in which case it would
be difficult to compare athermal system with our theory.
Additional numerical simulations are needed to clarify
this issue.

Granular materials under tapping could instead be
equivalent to thermal systems and display a re-entrance
that persists for N → ∞, but a finite-size study has not been
performed in this case [52–54]. Also, the results of [56,57]
on shear yielding support the idea that this transition is
similar to a spinodal point in presence of disorder. A more
direct comparison can be made between our theory and
very recent simulations of thermal hard spheres under shear
[58]. Our predictions are qualitatively compatible with
these numerical results. However, none of these studies
have investigated the coalescence of the shear yielding and
shear jamming lines at ðφ̂c; γcÞ nor the plastic dynamics
around the critical point, which are the most interesting
results of this work.
Conclusions.—We investigated the phase diagram of a

dense hard sphere glass, prepared in equilibrium at φ̂g > φ̂d

and followed adiabatically to density φ̂ and shear strain γ.
The phase diagram in the ðφ̂; γÞ plane (Fig. 3) generically
displays a shear yielding line when φ̂≳ φ̂g and a shear
jamming line when φ̂≲ φ̂j. The two lines merge at a critical
point, around which the system yields at extremely large
pressure and shear stress.
Although our results are derived in a mean-field setting,

we expect that they describe accurately the critical expo-
nents associated to the shear jamming line in finite
dimensions, as it is the case for γ ¼ 0 [24,26]. Indeed,
the shear jamming line has the same critical properties of
the isotropic jamming transition [25]. On the contrary,
even at the mean-field level, the critical properties of the
shear yielding line are not fully understood because this
line falls in a region where the glass is marginally stable
and a full replica symmetry breaking scheme is needed
[45]. Moreover, because the yielding transition is a
spinodal point in presence of disorder, it cannot be strictly
described by mean field in any dimension [59,60]. A
detailed characterization of the yielding transition is thus a
very difficult task and it is certainly a very important line
for future research. However, at the critical point ðφ̂c; γcÞ,
we conjecture that the system sizes where finite d
corrections become important diverge, so that the mean-
field theory of the yielding transition can likely become
exact close to ðφ̂c; γcÞ. The plastic dynamics around
ðφ̂c; γcÞ are expected to be strongly different from the
one of soft glasses. Its analytical and numerical inves-
tigation is another very interesting subject for future work.
Systematic numerical [58] and experimental [61] inves-
tigation of the phase diagram in Fig. 3 will be of great help
to fully understand the interplay of yielding and jamming
in amorphous solids.
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FIG. 3. Phase diagram of the glass prepared in equilibrium at
φ̂g ¼ 8 and followed adiabatically at density φ̂ > φ̂g and shear
strain γ. The shear jamming line γjðφ̂Þ and the shear yielding line
γyðφ̂Þ are plotted. The two lines merge at a critical point ðφ̂c; γcÞ.
At this special point, yielding happens at infinite pressure or
strain. For φ̂ ≲ φ̂c, yielding happens at γ ∼ γc with extremely
large pressure or strain. The vertical dotted line is the isochoric
line of a glass prepared at φ̂ > φ̂c and then strained at fixed
volume until it shear jams. The dotted-dashed line represents the
isobaric line of a glass prepared at the same initial packing
fraction, but then strained at fixed pressure. The shear jamming
transition is thus avoided and the glass yields for sufficiently high
strains.
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