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Despite great efforts, an unambiguous demonstration of entanglement of mobile electrons in solid state
conductors is still lacking. Investigating theoretically a generic entangler-detector setup, we here show that
a witness of entanglement between two flying electron qubits can be constructed from only two current
cross correlation measurements, for any nonzero detector efficiencies and noncollinear polarization vectors.
We find that all entangled pure states, but not all mixed ones, can be detected with only two measurements,
except the maximally entangled states, which require three. Moreover, detector settings for optimal

entanglement witnessing are presented.
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Introduction.—QOver the last two decades, the demand
for efficient methods to detect entanglement, key to
quantum information processing [1], has spurred research
on entanglement witnesses [2—6]. A witness is an observ-
able quantity which, for at least one entangled state, takes
on a value outside the range accessible for separable
(nonentangled) states. Entanglement detection with wit-
nesses has been demonstrated with, e.g., photons [7-9],
ions [10-12], and atomic nuclei [13]. Importantly, for any
entangled state, including locally realistic ones [14], there
is a witness that can detect it [2]. Moreover, witnesses, in
contrast to Bell inequalities [15,16] and full tomographic
reconstructions [17,18], allow entanglement detection with
only a few local measurements [19-21], even when the
number of entangled particles is large [22].

The prospects of few-measurement entanglement detec-
tion make witnesses particularly interesting for flying
qubits in solid state conductors, where an unambiguous
demonstration of entanglement is still lacking. Here,
detection schemes for spatially separated, spin [23,24] or
orbitally [25-28] entangled, electrons have been proposed
based on experimentally accessible current cross correla-
tions [29]. However, the required set of measurements, with
different, noncollinear detector settings and correlations
between two or more pairs of detector terminals, is
experimentally highly challenging. Aiming for less
demanding measurements, works [30-32] on witnesses
have proposed schemes with only two or three settings and
less than ten cross correlations, allowing detection of
certain classes of entangled states. Yet, two fundamental
questions remain unanswered: (i) What is the minimum
number of current cross correlation measurements needed
for an entanglement witness? (i) Which entangled states
can be detected by such a witness?

Here we answer these two questions within a generic
solid state entangler-detector model, see Fig. 1. We find that
only two cross correlation measurements—two detector
settings with one measurement per setting—are sufficient
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to constitute a witness. Moreover, we show that all
entangled pure (but not all mixed) states can be detected
by the witness, except the maximally entangled, which
require three measurements. In addition, the most favorable
settings for detecting a given pure state are identified. Our
findings will greatly simplify detection of entanglement
between mobile electrons in solid state conductors, such as
the recently investigated Cooper pair splitter [33-37].
Entangler-detector ~model—A  generic  entangler-
detector setup is shown in Fig. 1. The entangler emits
[38], at a rate I, identically prepared split pairs of entan-
gled electrons towards the detector systems A and B.
The emitted electrons [39] are entangled in either spin

FIG. 1. Schematic of the generic entangler-detector setup,
consisting of an entangler and two detector systems A and B.
The entangler generates split pairs of entangled electrons, in
either spin or orbital degrees of freedom, at a rate I'. Each detector
system consists of two detector terminals (£) and a beam splitter
with efficiency 0 < {4,{p <1 and unit-magnitude polarization
vector a, b. An entanglement witness W can be constructed from
only two current cross correlation measurements, with respective
polarization vectors a;, a, at A (b, b, at B). The local coordinate
systems are defined such that a; and a, (b; and b,) lie in the
xz plane, symmetrically about the z axis, with relative local
angles 8, (0p). The correlations can be measured between
currents at two terminals only (here A+ and B+).
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[42—-44] or orbital degree of freedom, where the latter refers
to, e.g., spatial location in one ballistic channel (out of two
available channels) [25-27,32,45,46] or quantum dots
[47-50]. The local basis states are denoted |1), |{), here-
after referred to as spin up or down. Detector system A (B)
consists of a polarizing beam splitter, characterized by a
unit polarization vector a (b), and two detector terminals
A= (B%). All electrons arriving at the detector terminals
contribute to the electric current; i.e., the terminals have
ideal efficiencies. To account for, e.g., dephasing and/or
nonperfect polarization of ferromagnetic detector terminals
[31,51], the beam splitter efficiencies are 0 < {4, {5 < 1.
An electron incident on the beam splitter at A will
consequently, with a probability {4, be projected along
the spin direction defined by a and transmitted to the
respective detector A+. With a probability 1 — ¢, the
particle is instead, irrespective of its spin, transmitted with
equal probability to A4+ and A—. The same holds for
detector system B.

For flying electron qubits, real-time detection of quantum
properties of individual particles is presently out of reach.
Instead, the natural candidate for entanglement detection is
low-frequency cross correlations of electric currents
flowing into detector terminals A+ and B=+. Focusing on
an entangler-detector system operating in the tunneling
regime, we can write the current cross correlators as
Siz(a,b) = ’Tr[(1 £ ¢4a-6) ® (1 £{zb-6)p]. Here
e is the elementary charge, 6 = (o,, Oy, o6.) is a vector of
Pauli matrices, ® is the tensor product, and p is the two-
particle spin density matrix of the pair emitted by the
entangler.

Witness.—For an entanglement witness based on current
cross correlations to be experimentally viable, it is key to
minimize the number of correlation measurements as well
as the number of detector terminal pairs A+, B+ between
which currents need to be correlated. In addition, it is
important to minimize the number of distinct detector
settings and to find a set of polarization vectors, a; at A
and b; at B, in the same plane. Motivated by these
requirements we seek a witness based on measurements
of N cross correlations between currents at two detector
terminals only. Taking, without loss of generality, terminals
A+ and B+, the corresponding linear operator is

N
W =31+ i 0) ® (1+8ab ). (1)

i=1

For W) to be an entanglement witness there needs to be
[2,3] at least one entangled state p such that one, upper (+)
or lower (—), detector margin A)= satisfies

AVt =tuw(WWp) — max tr(WNp.) > 0,

A== mpiP tr(WWN)p,) —tr(WW)p) > 0, (2)

where the maximization or minimization is carried out over
all separable states p,. We stress that to experimentally
test the entanglement of p via Eq. 2, the quantity
tr(WNp) = (e2T)' SN | S14(a;, b;) obtained from the
cross correlation measurements (I" obtained from inde-
pendent average current measurements) should be com-
pared to the calculated value max/ min/,\_tr(WW )p,).
Moreover, we investigate the existence of a witness for
a given p; a protocol for detecting the entanglement of a
completely unknown state typically requires more mea-
surements [21]. Our main questions can now be
rephrased as: (i) What is the minimum N required to
make W) fulfill Eq. 2? (ii) Which entangled states can
be detected by this WV)?

Key results.—We first summarize our answers to these
two questions; more details follow below. (i) While W(!) is
a tensor product of local operators at A and B, and hence no
witness, already W) is found to be a witness for all
detector parameters {4, 3, a;, b;, except a set of special
cases. For a bipartite system of qubits, W(? is a witness if
and only if the eigenstate corresponding to either the
smallest or the largest eigenvalue is (a) nondegenerate
and (b) entangled [52]. To show (a), we evaluate the
eigenvalues 1; of W) giving

Ai=2(1 £ cucp £ \/(CA + cp)’ + 5355), (3)

where the indices i = 1, 2, 3, 4 correspond to an order
of + as {+—-+}{-—-hL{-+-FL{+++}, with
Ay £ Ay £ A3 < Ay, depending only on ¢, = ¢, cos(6,/2),
Sq = Cusin(6,/2), a = A, B, with cos(6,) = a, - a, and
cos(0z) = b; - b,. Both eigenvalues 4,, 4, are nondegen-
erate for all detector parameters, except 8, = x, 03 = 7,
{4 =0, or {p =0, for which 1; = 4, and 43 = 44 due to
local rotation symmetries of the polarization vectors, and
¢4 = ¢p =1 for which 4; = 4, due to a hidden, nonlocal
symmetry [53,54].

To show (b), we introduce, without loss of generality,
local coordinate systems as shown in Fig. 1, yielding the
eigenstates |y ), |y4) corresponding to A;, 44 as

lw1) = sina|11) —cosall]),
lwa) = cosaltt) +sinalll), (4)

in the local {|11),[1}), 1),
0 < a < /4 given by

1) }-basis with the angle

tana = (\/(ea+cp)? +sh5h = (ca+cp) ) /sass (5)

The states |y), |w,4) are entangled for all @ # 0, i.e., for all
detector parameters except 8, =0, 83 =0, {4, =0, or
¢ =0, for which W® can be written as a product of
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FIG. 2. Left: The maximal detection margins &f of W® for
pure states p with concurrence 0 < C < 1. Right: Symmetric
detector settings 0, = 0z = 6 (top) and {4 = {3 = ¢ (bottom)
giving A of W in left panel. In all plots, solid blue (dashed

green) line corresponds to &:{ (&;).

local operators. Hence, the answer to (i) is N = 2; w@
is a witness operator for all nonzero detector efficiencies
(84, ¢ >0) and noncollinear polarization vectors
(04, O # 0, ).

C=0.75, A=0.1
0 05 10 0.5 1
0/n 0/n

FIG. 3. (a)-(d) The detection margin AZV + for symmetric
setups, 04 =0p =0 and {4, ={p =, with mixed states,
p=1=A)|yw)w|+21/4, 0<A<1, where |p) has concur-
rence0 < C <1.(e) A;r for p with different C and A. The cases in
(a)—(d) are marked with black dots. The color scale in (e) holds
also for panels (a)—(d).

To answer (ii), for a given entangled p we calculate Api,

the maximum detector margin A¥* for any W?; A> > 0
(&;t < 0) implies that p can (cannot) be detected by at least
one (any) W®. For a pure state, where Api is a unique
function of the entanglement of p, we find (see Fig. 2) that
Aj > A; > (0 for all nonmaximally entangled p, while

Af =A; =0 for the maximally entangled ones. This
result does not in general extend to mixed states, as
illustrated in Fig. 3. Hence, the answer to (ii) is: all
entangled pure (but not all mixed) states, except the
maximally entangled ones, can be detected by at least
one W), Symmetric parameter settings, maximizing the
detector margin Al‘,”i, are shown in Fig. 2. By performing a
third measurement, i.e., for W), the maximally entangled
states can be detected.

Derivation of results.—To arrive at our results we start by
recalling [3] some basic properties of entanglement wit-
nesses. The spectral decomposition of the operator in
Eq. (1) is W = 5"y ()"

ordered as /IEN) < AgN) < /IgN) < l‘(lN)

Eq. (2), by choosing the state p = |z//§N)>(z//§N)| the term

, with eigenvalues
. Considering A)/~ in

tr(WVp) = /IEN), taking on its smallest possible value. For

|1//§N)) entangled, any separable state p, written in the
eigenbasis of W) will have a nonzero weight of at least

one state |1;/l(-N)) with i > 2. This gives min, tr(WVp,) >
,12“’) and hence A}~ > 0. Similar arguments, based on ,19’)

and |w£N)), hold for the upper margin A}Y*.
Importantly, to guarantee strictly AY* > 0, for a two-

qubit system the entangled eigenstate |w§N)> or |y/£N)) also
needs to be nondegenerate; for a twofold or higher
degeneracy there exists at least one separable linear
combination of degenerate eigenstates [52], resulting in
A)* =0. Hence, to answer (i), we need to find the

minimum N for which W) has an eigenstate |1//§N)) or

|y/4(LN)) which is both (a) unique and (b) entangled.
Starting at N = 1, the eigenstates of W(), a tensor
product of local operators, are all separable, and hence W)

is no witness. For N =2, to test (a), we calculate the

eigenvalues of W), given in Eq. (3), defining 4; = /152). It

is clear from Eq. (3) that for all detector efficiencies {4, {p
and relative, local angles 64, 6z, we have
A1 £, £ A3 < A4. Only in three distinct cases do we have
degeneracies: for (1) anti-parallel polarization vectors,
0y, == or g ==, and (2) zero efficiency, {, =0 or
¢p = 0, both the largest and the smallest eigenvalue are
doubly degenerate, 4; = 4, and 43 = 14 while for (3) ideal
detector efficiencies, {4 = {p = 1, only the smallest eigen-
value is degenerate, A; = 1, but A3 # A4.

The degeneracies are consequences of underlying
symmetries of the witness operator. In case (1), with
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polarization vectors at detector system A (B) obeying
a,=-a,=a (b, =-b,=b), W? is invariant under
local rotations U, = exp[—i(¢/2)a-6]®@1 [U,=1Q
exp[—i(@/2)b - 6]] with ¢ an arbitrary angle. For case
(2) W@ is independent of the polarization vectors at
detector system A (B) and invariant under any local rotation
of them. In case (3) the degeneracy arises because of an
underlying nonlocal symmetry [53,54], with no transparent
physical origin.

To test condition (b) for W), we first note that a defining
property of entanglement is that it is invariant under local
unitary operations, i.e., independent of the choice of local
coordinate systems. We can thus, conveniently, take the
polarization vectors symmetrical about the z axis in the
xz plane, as illustrated in Fig. 1, giving

W =2[sys30, ® 6, + (1 + ca0,) ® (1 +cpo,)], (6)

depending, as 4;, only on the detector parameters 8,, 0,
{a> Cp via cy/p and s, /5. In the same basis, the eigenstates

|1;/§2)> = |w) and |1//£2)> = |w,) corresponding to the small-
est, 4;, and largest, 14, eigenvalue, respectively, are given
by Eq. (4), with Schmidt coefficients [55] cos « and sina,
where «a is defined by Eq. (5). The entanglement can be
quantified in terms of the concurrence C [56] ranging from
zero for a separable state to unity for a maximally entangled
state. For both |y) and |y4) in Eq. (4), we have

C = sin(2a); 0<ac<mr/4, (7)

i.e., [w) and |yy) are separable only for 64, 0z = 0 or {y,
Cp =0, for which W® is a tensor product of local
operators [clear from Eq. (6)]. For all other detector
parameters, |y;) and |w,) are entangled and condition
(b) is fulfilled. We thus see that W? is a witness operator
for all detector parameters, except 04, 03 = 0, 7, {4, {p =
0 or {4, = {p = 1, answering question (i).

To answer (ii), we first note that a sufficient, but not
necessary, condition for a state to be detectable is that it can
be written as in Eq. (4) for an «a that is given via Eq. (5) for
at least one witness W2). This condition is fulfilled for all
nonmaximally entangled states, although the correspond-
ing W® is not necessarily the most optimal choice for
detection. To find the optimal witness and to give a
necessary condition, we consider the quantity &fz
maxy,; AV, the largest possible detection margin.
Importantly, for A[f >0 (&f < 0) the state p can (cannot)
be detected for at least one (any) W@, The calculation
proceeds in two steps. First, the maximization or mini-
mization over all separable states p, in Eq. (2), respectively,
is carried out [57], giving

Xf, w eRr,

max / min tr(W®p,) = {
/ ( ! X5, W@ eRr,

Ps

where + (—) corresponds to the maximized (minimized)
value and the boundary between parameter regions R,
and R, is defined by Xi=X;. Here Xi=2[1%
Chp COS(GA/Q,)] [1 + CBCOS(QB/Q,)] and Xit = (:F RV YABYBA_
(1 —cosBy)(1 —cosBp)/cosOy + cosby), with Y,p =
(1 =cosB4)(1 + cos@y — {%(cos Oy + cosfp) and Y, is
obtained from Y, by interchanging all subscripts A <> B.

Second, we perform the maximization over the param-
eters of W) numerically. Importantly, a pure two-qubit
state is, up to a local unitary operation, uniquely charac-

terized by its entanglement [58—60]. Since &;t is invariant
under unitary operations of p, it is hence a function of the
entanglement of p only. The obtained Af for entangled
pure states p, characterized by C > 0, is shown in Fig. 2; we
have &; > A; > 0, with the only exception being states

with C = 1 for which A; = A; = (), see discussion below.
In other words, all entangled pure states, except the
maximally entangled, are detectable by W(?), answering
question (ii).

This result naturally raises the directly related question:
How to choose the detector settings to have the best
possible witness detection of a given entangled pure state?
That is, what parameters of W®) maximize AY* for a
p = |w)(y|? We identify [61] one particularly convenient
optimal setting, symmetric in both local relative angles
0, = 05 = 0 and detector efficiencies {4 = {p = ¢, with 0
and ¢ for Api shown in Fig. 2, right panel, as a function of
C. In addition, the local rotations of the polarization vectors
a;, a,, by, b, with respect to the settings shown in Fig. 1
are uniquely defined by |w).

Answering question (ii) for mixed states, we find that in
contrast to pure states, not all entangled states can be
detected by W2). However, AY* typically varies smoothly
with p; i.e., mixed states sufficiently close to a detectable
entangled pure state can be detected. As an example,
illustrated in Fig. 3, we consider p' = A1/4 + (1 — 4)p,
with 0 < 4 < 1, a statistical mixture of a pure state p, with
concurrence C, and white noise. The mixed state p’ is
detectable by W if 2 < AVE/(AVE + |A}=E|), where
AJ* is the detection margin in Eq. (2) (possibly negative)
with p substituted by 1. We note that p’ is entangled for
A <2C/(1+2C), aless strict condition on A.

Importantly, as pointed out, maximally entangled states,
as the Bell states, cannot be detected by W@ since for these
states 2(1 — ¢,¢p) < tr(W2p) <2(1 + £4¢p), which, for
any W), is inside the interval of expectation values
obtained from the separable states. Albeit seemingly
counterintuitive, we stress that similar results have been
found for other two-qubit witnesses [62]. The states are
nondetectable also when nonequal weights of the two
correlation measurements are used in Eq. (1). However,
by adding a third measurement, still only between two of
the detector terminals and with polarization vectors in the
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same plane, the resulting W) can detect the maximally
entangled states. For a symmetric setup, choosing a third
vector along the local z axis, the lowest possible detector
efficiency allowing detection of the Bell states is
(= 1/\/§, in agreement with Ref. [31].

In conclusion, we have shown that only two current cross
correlation measurements are needed to detect entangle-
ment of flying electron qubits. Moreover, all pure entangled
states can be detected, except the maximally entangled,
which require three measurements. Our findings will
facilitate an experimental detection of electronic entangle-
ment and motivate further theoretical investigations on
witness based entanglement quantification [63-65] and
nonlinear witnesses [66,67] from current cross correlations.

We acknowledge support from the Swedish Research
Council. We thank F. Lefloch and C. Schonenberger for
discussions.
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