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We study the thermal transport in two-dimensional systems with a nontrivial Berry curvature texture.
The physical realizations are many; for the sake of definiteness, we consider undoped graphene gapped by
the presence of an aligned hexagonal-boron-nitride substrate. The same phenomenology applies, i.e., to
surface states of 3D topological insulators in the presence of a uniform magnetization. We find that chiral
valley-polarized second-sound collective modes propagate along the edges of the system. The localization
length of the edge modes has a topological origin stemming from the anomalous velocity term in the
quasiparticle current. At low temperature, the single-particle contribution to the transverse thermal
conductance is exponentially suppressed, and only second-sound modes carry heat along the boundary.
A sharp change in the behavior of the thermal Hall conductance, extracted from nonlocal measurements of
the temperature along the edge, marks the onset of ballistic heat transport due to second-sound edge modes.
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Introduction.—Managing heat production and transfer is
one of the major challenges of the present time [1]. The
constant miniaturization of electronic circuitry heavily
relies on the reduction of the heat produced by a single
element or, alternatively, on efficient dissipation mecha-
nisms. The quest for novel materials with either of these
properties has become more vibrant in recent years, fueled
by the discovery of two-dimensional (2D) materials [2,3].
Among these, graphene stands out for its record-high
thermal conductivities [4–7].
Although materials are new, the theory describing heat

conduction in solids is well established [8–10]. Both
electrons and phonons contribute to the transfer of heat
from hot to cold regions [8–10]. While, in insulators and
semiconductors, phonons dominate the heat transport, in
metals and semimetals, the contribution of electrons can be
comparable or even dominant over that of lattice vibrations
[8]. In this Letter, we focus on the transfer of heat due to
electrons in the hydrodynamic regime [11–16].
Usually, electron-impurity scattering occurs at a much

higher rate than electron-electron collisions [12]. In this
case, a “diffusive” regime is established. The evolution of
the temperature is well described by the Fourier law of heat
conduction [10,11]. Two transport quantities control the
density and heat diffusion equations, namely the charge and
thermal conductivities. When the system is in the Fermi-
liquid regime, they are proportional to each other. This
property, the so-called Wiedeman-Franz law [8], reflects
the fact (i) that the same kind of quasiparticle carries both
charge and heat and (ii) that the scattering mechanism
affects the two transport channels in the same way [9,10].
However, even weak electron-electron interactions modify
this result [17–23].

When a system is strongly interacting and ultra clean, the
whole picture of transport changes dramatically: the
electron liquid is driven into the hydrodynamic regime
[12,24–28]. Electrons are described by a local-equilibrium
distribution function, i.e., by a Fermi distribution whose
chemical potential and temperature are space and time
dependent and whose momentum is shifted by the local
value of the drift velocity of the fluid [10]. These three
quantities are determined from the knowledge of the local
values of the densities of the conserved quantities, i.e., the
particle number, energy, and momentum, respectively.
Their equations of motion, i.e., the continuity, Navier-
Stokes, and heat-conduction equations are controlled by a
handful of parameters that can be calculated from the
microscopic model [11,14,26,29].
Notably, the hydrodynamic equations admit solutions in

which the heat is transferred ballistically by means of
entropy waves, i.e., the so-called second sound [11,24].
The cleanest observation of second sound occurred in 4He
below the λ point (corresponding to a temperature of
∼2.18 K [30]). Few other systems have been reported to
support ballistic heat transfer [31–33]. Recently, undoped
graphene was proposed as a possible material in which this
phenomenon could be observed [34].
When the inversion symmetry of the hexagonal lattice is

broken, and a gap is opened at the Dirac point, the system
exhibits hot spots of Berry curvature at the two inequivalent
valleys (K and K0) of the Brillouin zone [35,36]. The latter
acts as a gauge field in momentum space, and leads to
observable physical effects [36–42]. When an external
force, e.g., due to an electric field or thermal gradient,
sets electrons in motion, they “skew” in the orthogonal
direction under the effect of the Berry curvature, and
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transverse (electric or thermal) currents appear [36]. Since
the time-reversal symmetry is unbroken, electrons in
different valleys experience Berry curvatures with opposite
signs [43]. Two counter-propagating transverse currents
appear, each of them due to the electrons of one valley. The
net current, therefore, vanishes, but the “valley” current
stays finite [36,39].
The Berry curvature (Ωk) also has an important impact

on the collective modes of the electron liquid [44–47], i.e.,
the self-sustaining solutions of the coupled Navier-Stokes
and Maxwell equations (the latter are needed only to
determine the charged modes [12]). Notably, in two
dimensions and in the absence of a magnetic field, the
Berry curvature does not appear explicitly in the linearized
equations describing the motion of the fluid in the bulk.
However, it crucially enters into the boundary conditions,
and it has been shown to stabilize charged collective modes
localized at the edges of the sample (edge plasmons [47]).
When an electric field is applied, the quasiparticle velocity
acquires an anomalous component, orthogonal to both Ωk
and the applied force, which adds up to the Bloch band
velocity [43]. Since, at the boundaries, the total velocity
perpendicular to the edges has to vanish, the presence of the
anomalous term leads to nontrivial solutions of Navier-
Stokes equations [47]. These solutions would not exist in
the absence of the anomalous velocity (or of an external
magnetic field [48–51]).
In this Letter, we study the problem of second sound in

graphene, when inversion symmetry is broken by, e.g., the
presence of an aligned hexagonal-boron-nitride (h-BN)
substrate [36,52,53]. We focus on the physics around the
Dirac points, neglecting the effect of mini-Dirac cones
stemming from the moiré superlattice [54,55]. We show
that, when the system is undoped and the temperature is
smaller than the band gap, it cannot support edge plasmons
but only charge-neutral second-sound collective modes
localized at the boundary [see Fig. 1]. Notably, since the
electrons of each valley experience opposite Berry curva-
tures, two counter-propagating and completely valley-
polarized second-sound edge modes are found. We discuss
the experimental conditions and setups under which these
can actually be observed.
Model.—We consider electrons in gapped graphene in

the presence of thermal fluctuations. The Hamiltonian
reads (hereafter, ℏ ¼ 1) [56–60]

H ¼
X
k;α;β

c†k;αEk · σαβck;β; ð1Þ

where c†k;α (ck;α) creates (destroys) an electron with
momentum k in sublattice α¼A, B, Ek¼ðvFkx;vFky;ΔÞ,
vF is the Fermi velocity, and Δ is (half) the band gap. For
graphene on h-BN, the band gap is predicted to vary
between 10 and 300 meV, depending, e.g., on the misalign-
ment angle between the two structures [61–64]. For our

estimates, we use the fairly small value Δ=kB ≃ 180 K,
which was reported in recent experiments performed on a
particular sample of graphene on h-BN [36,61]. Naturally,
if the value of Δ is larger (as it is theoretically predicted for
a perfect alignment), we can also expect our findings to be
relevant for room-temperature experiments. The band
energy is εk;λ ¼ λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvFkÞ2 þ Δ2

p
(λ ¼ � label the con-

duction and valence bands), while the Berry curvature in
valley K is [43]

Ωk;λ ¼ −λ
v2FΔ

2½ðvFkÞ2 þ Δ2�3=2 ẑ: ð2Þ

Because of the time-reversal symmetry, the Berry curvature
of the valley K0 has the opposite sign (i.e., its band gap is
−Δ). In the presence of an electric field Eðr; tÞ, the
quasiparticle velocity becomes vk;λ ¼ ∇kεk;λ þ E ×Ωk;λ.
The second term is the so-called anomalous velocity.
Hydrodynamic equations are derived by assuming that
the system is in local quasiequilibrium with the distribution
function [44–47]

fk;λ ¼ f1þ exp½ðεk;λ − u · k − ~μÞ=ðkB ~TÞ�g−1; ð3Þ

where ~T ¼ T þ δTðr; tÞ, ~μ ¼ μþ δμðr; tÞ, and u ¼ uðr; tÞ
are, respectively, the local temperature, chemical potential,
and fluid velocity, while kB is the Boltzmann constant. We
define T and μ as the (uniform) equilibrium temperature
and chemical potential. We will assume that jδTj ≪ T
and jδμj ≪ maxðjμj;ΔÞ. The Navier-Stokes equations,
obtained by integrating the semiclassical Boltzmann equa-
tion over its momenta (1, k, εk;λ − μ), read (we suppress
space and time indices) [11,14,27,28]

FIG. 1. The edge second-sound dispersion for a half-gap
Δ=kB ¼ 180 K and a temperature T ¼ 90 K [kBT=ð2ΔÞ ¼
1=4]. The shaded region corresponds to the particle-hole con-
tinuum (ℏω > 2Δ). Note that the edge second-sound modes are
completely valley polarized.
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∂tnþ ∇ · jn ¼ 0

∂tpþ ∇iςij þ eσE ¼ 0

∂tsþ ∇ · jq ¼ 0: ð4Þ

Here, nðr; tÞ, sðr; tÞ, and pðr; tÞ are, respectively, the
number, entropy, and momentum densities, while jnðr; tÞ,
jqðr; tÞ, and ςijðr; tÞ are the corresponding currents. The
stress tensor ςij also contains the kinetic contribution to the
equation of motion of the momentum density. Finally, σ is
the momentum conductance.
Collective modes are found by solving the system of

equations (4) together with the appropriate boundary
conditions. We require the component of the particle and
heat currents [38,41],

jn ≡
X
k;λ

vk;λfk;λ þ ∇ ×
X
k;λ

ξk;λΩk;λfk;λ; ð5aÞ

jq ≡
X
k;λ

ξk;λvk;λfk;λ þ ∇ ×
X
k;λ

ξ2k;λΩk;λfk;λ; ð5bÞ

perpendicular to the edge to vanish at the edge itself. Here,
ξk;λ ¼ εk;λ − μ. Note that the last term in Eq. (5b) can be

rewritten as jðtrÞq ¼ kspxyẑ × ∇T, where kspxy is the single-
particle transverse thermal conductance [41].
Second sound in the undoped limit.—In the undoped

regime, our description breaks down if the semiclassical
electron wave packets are shared between the bands [43].
A more complicated non-Abelian description would be
needed [43]. To keep the presentation as simple as possible,
we assume that the gap 2Δ is the largest energy scale, i.e.,
we restrict ourselves to the case kBT < 2Δ (at any rate, we
focus on the case fvFq;ωg ≪ 2Δ). In this temperature
range, interband transitions are exponentially suppressed,
and it still makes sense to consider the electronic wave
packets as composed by electrons of only one band.
When the chemical potential is exactly in the middle of

the gap and in the absence of external electric fields, the
continuity equation becomes trivial, since n ¼ jn ¼ 0.
Moreover, the density remains constant and no self-induced
electric field appears. Therefore, we set E ¼ 0, and we
consider the last two Navier-Stokes equations, which read
(we set kB ¼ 1 for convenience)

∂tpþ
T
2
AðΔ=TÞ∇sþ ν∇2p ¼ 0

∂tsþ
v2F
T
∇ · p ¼ 0; ð6Þ

where ν is the kinematic viscosity, AðxÞ ¼ 1 − x2f1ðxÞ=
f3ðxÞ, and

fnðxÞ ¼
1

2

Z
∞

jxj
dy

yn

cosh2ðy=2Þ : ð7Þ

These equations agree with those of Ref. [34] in the limit
Δ → 0, and lead to bulk modes with acoustic dispersion
ω ¼ ~vFq=

ffiffiffi
2

p
, where ~vF ¼ vFA1=2ðΔ=TÞ Note that AðxÞ

is always positive and vanishes in the limit x → ∞ [see
Fig. 2(a)] as AðxÞ → 2=x.
Now, let us consider collective modes localized at the

edge. For the time being, we neglect the kinematic viscosity
ν, which we will reintroduce at the end of the calculation.
Indeed, although it is possible to retain it at all steps, the
intermediate equations become quite cumbersome.We look
for solutions of Eq. (6) of the form sðr; tÞ ¼ s0 expðx=lþ
iqy − iωtÞ and pðr; tÞ ¼ p0 expðx=lþ iqy − iωtÞ, assum-
ing that the system occupies the half space x < 0. We get

ω2 − ~v2Fðq2 − l−2Þ=2 ¼ 0

−iωp0;x þ
T
2
AðΔ=TÞl−1s0 ¼ 0: ð8Þ

Note that it is not p0;x, but the sum of p0;x and an
anomalous term analogous to those of Eqs. (5a)–(5b) that
vanishes at the boundary. This condition is equivalent to
requiring that the physical energy current je ¼ jq þ μjn
(which coincides, apart from numerical factors, with the
physical momentum density) across the edge vanishes.
Equation (8) must be solved together with the boundary
conditions jn;xðx ¼ 0Þ ¼ 0 and jq;xðx ¼ 0Þ ¼ 0. The cur-
rents are given in Eq. (5). It turns out that Eq. (5a) is always
zero. Indeed, both the band and anomalous velocities
vanish when integrated over both bands. Therefore, we
are left to study Eq. (5b). After some transformations,
combining it with the second line of Eq. (8), we get

(a)

(b)

FIG. 2. (a) The velocity ~vF, in units of the Fermi velocity vF, as
a function of temperature (in units of the half-gap Δ). (b) The
localization length in the x̂ direction in nm, plotted as a function
of the temperature for three values of the wave vector q. Note that
the solid curve, corresponding to q ¼ 0.1 × 106 cm−1 has been
rescaled by multiplying it with a factor of 0.2.
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jq;xðx ¼ 0Þ ¼ −i
s0v2F
2

�
T
ω
AðΔ=TÞl−1 þ qBðΔ=TÞ

�
; ð9Þ

where BðxÞ ¼ xf1ðxÞ=f3ðxÞ. In the limit x → ∞,
BðxÞ → 1=x. We remark that the first (second) term inside
the large parentheses of Eq. (9) corresponds to the normal
(anomalous) component of the heat current. The last term on
the right-hand side of this equation was obtained from the
anomalous part of Eq. (5b) [jtrq;x ¼ −kspxy∂yT, with κspxy ¼
Δf1ðΔ=TÞ=ð4πÞ] by expressing the gradient of the temper-
ature in terms of the gradient of the entropy by using their
local-equilibrium relation δs ¼ Tf3ðΔ=TÞδT=ð2πv2FÞ. For
completeness, p¼T3uf3ðΔ=TÞAðΔ=TÞ=ð4πv4FÞ.
Equation (9) defines the localization length l ¼ lðq;ωÞ,

which interestingly appears to be a topological property of
the system stemming from the presence of the band gap
and finite Berry curvature. Importantly, the equation
jq;xðx ¼ 0Þ ¼ 0 has a solution only if qΔ < 0. Recalling
that Δ (which controls the sign of the Berry curvature) has
opposite signs in different valleys, we find that only modes
with q < 0 (q > 0) can propagate in valley K (K0). Solving
Eq. (9), we find l−1 ¼ −ωqBðΔ=TÞ=½TAðΔ=TÞ�. Inserting
this back into the first line of Eq. (8) and solving for ω, we
find

ω ¼ jqj ~vFffiffiffi
2

p
�
1þ v2Fq

2

T2

B2ðΔ=TÞ
AðΔ=TÞ

�−1=2
; ð10Þ

which holds for states with qΔ < 0. States with qΔ > 0
cannot propagate. At this point, we can reintroduce the
viscosity. At small q, the boundary conditions and expres-
sion for the localization length l are unaffected by ν.
However, the kinematic viscosity introduces dissipation of
the second-sound modes, and the frequency is replaced in
the limit q → 0 by ω → ~vFjqj=

ffiffiffi
2

p þ iνq2.
It is useful to analyze the behavior of the second-sound

dispersion and localization length in the limit of small
momentum and temperature. We find that ω→vFjqj

ffiffiffiffiffiffiffiffiffi
T=Δ

p
and l → 2

ffiffiffiffiffiffiffi
TΔ

p
=ðvFq2Þ. As Fig. 2(b) shows, the locali-

zation length decreases at low temperatures; i.e., the
second-sound mode becomes more and more localized at
the edge. At the same time, its velocity also decreases, and
in the limit of zero temperature, it becomes a completely-
localized nondispersive edge mode.
Summary and conclusions.—In this Letter, we studied the

problem of thermal transport at the edge of a graphene sheet
with broken inversion symmetry. The electron liquid is
assumed to be in the hydrodynamic regime [11–16]. We
find that two counter-propagating, valley-polarized second-
sound modes exist when the Fermi energy is in the gap. This
result is made possible by the Berry curvature of the band
structure [43]. Indeed, even though the latter has no impact on
the bulk collective modes, it crucially enters into the
boundary conditions ensuring that no particle or heat current

flows through the edge. Each of the two inequivalent valleys
of theBrillouin zone contributes one second-soundcollective
mode. They propagate in opposite directions along the edge,
due to the opposite sign of the Berry curvature.
This result can be experimentally tested in nonlocal

thermal measurements [36]. Consider, for example, the
multiterminal Hall-bar geometry of Fig. 3(a). When a
thermal gradient is applied, two second-sound modes
transport the heat along the edge, and therefore, the
temperature distribution becomes strongly anisotropic.
Using known techniques [65,66], it is possible to measure
the local temperature along the edge and to relate it to the
thermal conductance of the channel. For a bosonic edge
mode, assuming the transmission probability to be exactly
one, it is possible to determine the thermal conductance
from the Landauer-Buttiker formula, [67], i.e.,

κðssÞxy ¼ 1

h

Z
2Δ

0

ω2dω
4kBT2sinh2½ω=ð2kBTÞ�

→
π2k2B
3h

T: ð11Þ

The final result (the quantum of thermal conductance of a
perfect 1D channel) holds in the limit of kBT ≪ 2Δ.
In general, a nontrivial Berry curvature also induces a

transverse single-particle heat current (the so-called thermal
Hall effect [41]). The total nonlocal thermal conductance

is, therefore, κxy ¼ κðssÞxy þ κðspÞxy . However, in the limit

kBT ≪ 2Δ, κðspÞxy is exponentially suppressed [41]. The
change in the behavior of κxy versus temperature shown in
Fig. 3(b) is the hallmark of thermal transport mediated by

(a)

(b)

FIG. 3. (a) The proposed experimental setup. A thermal
gradient is applied between the middle contacts (2 and 4), and
the temperature drop is measured on contacts 1 and 3. The
nonlocal temperature drop can be related to the transverse thermal
conductance as in [65,66]. (b) The thermal conductance κxy [in
units of the thermal conductance of a perfect one-dimensional
bosonic channel κ0 ¼ π2k2BT=ð3hÞ] as a function of the temper-
ature (in K). We also plot the two components κspxy and κssxy in the
same units. Note that, at low temperature, the single-particle
contribution is completely suppressed, and the transport is
dominated by edge collective modes. At higher temperature,
the fast growth of κspxy leads to a change in the slope of the total
thermal conductance.
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the edge second-sound modes. Another possibility for
revealing the signatures of the localized edge modes is
via shot noise experiments where one expects that thermal
modes will significantly change the Fano factor. This
approach was beautifully explored in the context of
counterpropagating neutral modes of the fractional quan-
tum Hall effect [68].
Apart from graphene, h-BN–encapsulated transition

metal dichalcogenides, such as WTe2 and MoTe2, that
are expected to host time-reversal invariant quantum spin
Hall states at monolayer thickness, represent alternative
platforms for the observation of the topological collective
transport effect we predict in this Letter.
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