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We show that, in the presence of a deformable lattice potential, the nature of the disorder-driven metal-
insulator transition is fundamentally changed with respect to the noninteracting (Anderson) scenario. For
strong disorder, even a modest electron-phonon interaction is found to dramatically renormalize the random
potential, opening a mobility gap at the Fermi energy. This process, which reflects disorder-enhanced
polaron formation, is here given a microscopic basis by treating the lattice deformations and Anderson
localization effects on the same footing. We identify an intermediate “bad insulator” transport regimewhich
displays resistivity values exceeding the Mott-Ioffe-Regel limit and with a negative temperature coefficient,
as often observed in strongly disordered metals. Our calculations reveal that this behavior originates from
significant temperature-induced rearrangements of electronic states due to enhanced interaction effects
close to the disorder-driven metal-insulator transition.
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Introduction.—Sufficiently strong disorder typically
leads to the formation of bound electronic states. This
physical process—Anderson localization—is by now well
understood in the noninteracting limit [1,2]. Still, even
early experimental and theoretical studies stressed [3] that
omnipresent interaction effects cannot be disregarded,
although they proved difficult to tackle. From the theo-
retical point of view, the pitfall of conventional weak-
coupling theories has been the challenge in incorporating
the strong interaction effects at the same level as disorder,
especially in compounds with local magnetic moments and
various Mott systems. The theoretical landscape changed
dramatically following the rise of dynamical mean-field
theory (DMFT) ideas [4], which provided a new perspec-
tive. Several intriguing phenomena, such as disorder-driven
non-Fermi liquid behavior [5], glassy dynamics of elec-
trons [6], and even the physics of Mott-Anderson tran-
sitions [7] have been captured, with the focus on systems
with strong electronic correlations.
Many other materials, including the famous A15 com-

pounds [8], as well as “phase-changing” amorphous alloys
[9], can be experimentally tuned through disorder-driven
metal-insulator transitions (MITs) [10,11], but they often
do not display [3] strong electronic correlations of the Mott
type [7]. In many such systems, transport on the metallic
side is dominated by conventional electron-phonon scatter-
ing, leading to familiar linear resistivity at ambient temper-
atures. This behavior is modified as disorder increases,
leading to a change of sign in the temperature coefficient of
resistivity (TCR), and eventually a crossover to the insu-
lating behavior. While the precise mechanism has long

remained a puzzle [3], one thing is clear: the relevant
transport processes must reflect a nontrivial interplay of the
dynamical lattice deformations and disorder.
Soon after the discovery of localization, Anderson himself

[12] suggested that in real systems lattice deformations could
dramatically affect the random potential, possibly leading to
a gap opening on the insulating side. Ramakrishnan [3]
subsequently argued that, as soon as translational invariance
is lost, a direct Hartree-type electron-phonon interaction
arises that can strongly renormalize the disorder, reminiscent
of charged impurity screening by Coulomb interactions; in
contrast with the Coulomb case, however, the lattice defor-
mations should enhance (i.e., antiscreen) the effects of
disorder. While these early ideas and subsequent works
[13–15] strongly emphasized the very significant role of
lattice deformations in disordered materials, so far no
systematic theory has been put forward that can provide a
picture of the resulting MIT.
In this Letter, we present the conceptually simplest

theory of disorder-driven MITs, treating Anderson locali-
zation at the same level as the electron-phonon interaction.
This is achieved by blending typical medium theory (TMT)
for Anderson localization [16], and dynamical mean-field
theory [4] to tackle lattice deformations. The accuracy of
the former has been validated by appropriate cluster
extensions, showing it to capture most trends for
Anderson transitions [17,18]. Careful systematic studies
have also shown the DMFT approach to the electron-
phonon problem totally capable of capturing nonperturba-
tive polaronic effects, describing both incoherent self-
trapping and coherent quasiparticle properties [19–23].
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In clean systems polaron formation occurs only at very
strong coupling, uncharacteristic of typical metals. We find
that the situation is dramatically different in the presence of
sufficient disorder. Here, very pronounced disorder-
induced lattice deformations arise in the vicinity of the
MIT even in the most common cases of weak or moderate
electron-phonon coupling, dominating most observables. It
is precisely on such an experimentally relevant region that
we concentrate below.
Model and methods.—We study the following disordered

Holstein model:

H ¼ −t
X
hiji

c†i cj þ
X
i

ϵic
†
i ci − g

X
i

c†i ciXi þHph; ð1Þ

where c†i (ci) are creation (annihilation) operators for
electrons moving on a lattice of sites i with transfer integral
t. The site energies ϵi are randomly chosen from a uniform
distribution of width 2W, P0ðϵiÞ ¼ θðW2 − ϵ2i Þ=ð2WÞ. In
addition to the random potential, the electrons interact
locally with dispersionless phonons of frequency ω0 ¼ffiffiffiffiffiffiffiffiffiffiffi
K=M

p
described by Hph¼

P
i½ðKX2

i Þ=ð2ÞþðP2
i Þ=ð2MÞ�.

The strength of the electron-phonon coupling is measured
by the dimensionless parameter λ ¼ g2=ð2KDÞ, with D the
half bandwidth. As our focus is on metals where electron
correlations do not play a major role, we ignore the spin
degree of freedom and consider a half-filled band with a
semicircular density of states (DOS).
In DMFT for spatially homogeneous systems, the lattice

problem Eq. (1) is mapped onto a single impurity which is
coupled to the rest of the system via a dynamical Weiss
field G−1

0 [4]. The latter is determined self-consistently by
spatially averaging the local Green’s functionG over all the
equivalent sites of the lattice. While this theory (which in
the noninteracting limit is known as the coherent potential
approximation, or CPA) can describe certain properties of
disordered electron systems on the average [24,25] it does
not account for the large and nonnormal fluctuations that
cause Anderson localization of the electronic carriers. To
this aim an alternative mean-field description can be
introduced that focuses on the most probable, or typical
quantities: the typical density of states (TDOS) is defined as
the geometric average of the local DOS over sites with
random energy ϵ as ρtypðωÞ ¼ exp ½R dϵP0ðϵÞ ln ρðω; ϵÞ�.
According to the Fermi golden rule, the escape rate from a
given site can be estimated as τ−1esc ≃ t2ρðω; ϵÞ [1]; the
typical escape rate is therefore proportional to the TDOS,
which represents the density of mobile states at a given
energy. The region in the band where ρtypðωÞ vanishes
identifies the mobility edge, and its value ρtypð0Þ at the
Fermi energy serves as an order parameter for the Anderson
transition [16].
Solving the full model Eq. (1) involves the calculation of

Σe-phðω; ϵÞ, the local electron-phonon self-energy in the

presence of site disorder. To this aim we first apply the
formulation of Refs. [22,23] where the phonons are
represented by a classical field that responds self-
consistently to the electrons. The advantage of this method,
which is valid in the adiabatic limit ω0=D → 0, is that the
lattice randomness and the deformations are treated on the
same footing, for any value of λ. The effects of phonon
quantum fluctuations for ω0 ≠ 0 are subsequently included
via a diagrammatic noncrossing approximation (NCA)
valid in the weak and moderate electron-phonon coupling
regimes [26–28].
Disorder-induced polaron transition and mobility

gap.—Figure 1(a) shows the phase diagram obtained from
the solution of the TMT-DMFTequations. In the absence of
electron-phonon interactions λ ¼ 0, the theory reduces to
that of Ref. [16]: a transition from a metal to an Anderson

insulator occurs at a critical disorder strength Wð0Þ
c ¼

e=2≃ 1.36, identified by ρtypð0Þ ¼ 0 (all states are local-
ized). Turning the electron-phonon coupling on stabilizes
the Anderson insulator, decreasing Wc: as anticipated, the
effect is opposite to that of repulsive Coulomb interactions
[29] that instead screen out the effects of disorder. As we
proceed to show, polaron states characteristic of the strong
coupling limit exist all the way down to λ → 0, reflecting
the positive interplay of disorder and electron-phonon
coupling [27,30].
To illustrate the evolution of the electronic properties

across the transition, we report in Figs. 2(a)–2(d) both the
average DOS and the TDOS, providing, respectively, the
spectrum of electronic states and their conductive character.
Both quantities, calculated here in the classical phonon
limit (Fig. 1 inset), are accessible experimentally through
local spectroscopic probes [31]. For strong electron-
phonon interactions and weak disorder [panels (a)–(b)], as
the electron-phonon coupling strength reaches the critical
value λc, a mobility gap opens at ω ¼ 0 indicating the

FIG. 1. Phase diagram.—Metal-insulator transition (MIT) at
T ¼ 0 calculated for quantum phonons in the adiabatic regime
(ω0 ¼ 0.05). The shaded area corresponds to the “bad insulator”
behavior seen in transport (see text). The dashed line is a sketch
of the expected behavior approaching the clean limit. The inset
shows the effect of increasing phonon quantum fluctuations.
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localization of states around the Fermi energy (TDOS,
shaded). This is rapidly followed by the disappearance of
the states themselves (DOS, red), as both phenomena are
driven by polaron formation: self-trapping of the charges
due to strong electron-phonon interactions (and pinned by
weak disorder) leads to a binary distribution of lattice
displacements that splits the excitation spectrum into two
separate subbands [22].
Strikingly, the opening of a mobility gap at the MIT

persists down to the weakly interacting limit, a situation
that is of broad relevance to many disordered materials. The
behavior observed as the transition line is crossed upon
increasing W at small λ [cf. Fig. 2(d)] is fundamentally
different from the case where lattice effects are ignored
from the beginning, where all states become localized at the
MIT and no mobility gap is observed (dotted line). At
variance with the strong electron-phonon coupling limit,
however, here the mobility gap opens at the Fermi energy in
an electronic spectrum that is otherwise essentially unper-
turbed. The critical behavior of the order parameter, shown
in Fig. 2(e), is also modified accordingly: the mean-field
behavior ρtyp ∼ ðWc −WÞ found at λ ¼ 0 [16] changes to
ðWc −WÞ1=2 at the approach of the MIT, indicating a
radical change in the disorder distribution as soon as
λ ≠ 0 [32].
Self-consistent local potentials.—To substantiate this

statement, we introduce the self-consistent field u ¼ ϵþ
ReΣe-phðω ¼ 0; ϵÞ, defined as the local energy level renor-
malized by the interaction with the deformable lattice. In
the static phonon limit considered first, the real part of the
electron-phonon self-energy reduces at T ¼ 0 to the
energy-independent Hartree term ReΣðω; ϵÞ ¼ ffiffiffi

λ
p

X0ðϵÞ,
where X0ðϵÞ is the static local deformation on a site, given
the local potential ϵ [22]. It is clear from Eq. (1) that the site

disorder acts as a polarization field coupled to the charge, in
full analogy with the external magnetic field in the Ising
model. Accordingly, an order parameter for the polaron
transition can be defined as the value X0 ¼ limϵ→0þX0ðϵÞ
much like the remnant magnetization in a ferromagnet, as
shown in Fig. 3(a).
Inverting for ϵðuÞ leads to the effective disorder distri-

bution PeffðuÞ ¼ P0½ϵðuÞ�=j1þ ½ð∂Σe-phÞ=ð∂ϵÞ�j reported
in Fig. 3(b), showing that the action of the lattice degrees
of freedom dramatically changes the nature of the disorder.
As randomness increases, the presence of correlated
electron-lattice displacements leads to a discontinuity in
X0ðϵÞ, signaling a polaron transition; correspondingly, a
gap opens in PeffðuÞ. Moreover, the buildup of local
deformations correlated with the large fluctuations of the
site potentials starts already well before the transition, This
causes a dip in the distribution [dashed line in Fig. 3(b)] and
a suppression of the mobile states available at the Fermi
energy [Fig. 2(c)], which has fundamental consequences
for charge transport as we show next.
Minimum metallic conductivity.—We evaluate the elec-

trical conductivity from the Kubo formula following
Refs. [33,34], by expressing the current-current correlation
function as χJJðωÞ ¼ ΛðωÞP1ðωÞ, which isolates the dom-
inant nonlocal contribution P1 responsible for localization.
From Ref. [25] we have that P1ðωÞ ¼ BðωÞρtypðωÞ with
BðωÞ a weakly ω-dependent function, so that the conduc-
tivity is correctly proportional to the order parameter of the
Anderson transition. The prefactor Λ is noncritical and
can be calculated within DMFT-CPA as ΛðωÞ ¼ χCPAJJ ðωÞ=
PCPA
1 ðωÞ, leading to the following interpolation formula

(see Supplemental Material [35]):

σ ¼ σ0

Z
dω

�
−
∂f
∂ω

�
χCPAJJ ðωÞ
ρðωÞ ρtypðωÞ; ð2Þ

(a) (b)

(c) (d)

(e)

FIG. 2. Spectral features and order parameter.—Panels
(a)–(d), average (bold line) and typical DOS (shaded) across
the MIT at T ¼ 0 for classical phonons. (a),(b) at W ¼ 0.1, for
λ ¼ 0.5, 0.64; (c),(d) at λ ¼ 0.05, for W ¼ 1.1, 1.2; the dotted
line is the TDOS at λ ¼ 0, shown for comparison; the DOS in the
second row have been scaled down by an arbitrary factor for
clarity. (e) Order parameter vs disorder amplitude W. From right
to left, λ ¼ 0, 0.05, 0.1, 0.2, 0.3, 0.4. The crosses mark the
polaron transition. The inset shows the quantum case for λ ¼ 0.3
and ω0 ¼ 0.2.

(a) (b)

FIG. 3. Self-consistent fields and effective disorder.—(a) Lat-
tice displacement X0 as a function of ϵ and (b) effective disorder
distribution: below (W ¼ 1.0, dashed), at (W ¼ 1.15, dotted) and
beyond the polaronic transition (W ¼ 1.2, bold), for λ ¼ 0.05 and
T ¼ 0. Thin lines in (a) and (b) are the NCA results for quantum
phonons at W ¼ 1.2 and ω0 ¼ 0.2 [the value of ω0 is marked by
arrows in (b)].
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where f is the Fermi function and σ0 ¼ πe2a2=ℏv the
conductivity unit (a and v are, respectively, the lattice
parameter and the unit cell volume). Equation (2) can be
greatly simplified by taking the T → 0 limit and introduc-
ing the transport scattering time from the semiclassical
expression χCPAJJ ð0Þ ∝ ρð0Þτ [21]. The resulting

σ ∝ ρtypð0Þτ ð3Þ

acquires a transparent physical meaning: upon approaching
the Anderson insulator, part of the carriers localize due to
quantum interference effects and drop out of the conduc-
tivity, which is encoded in ρtyp [1]; the remaining itinerant
carriers are not affected by localization and are, therefore,
scattered by disorder and lattice fluctuations in a way that is
properly described by the semiclassical τ.
The conductivity obtained from Eq. (2) is illustrated in

Fig. 4(a) [note that Eq. (3) would provide essentially
indistinguishable results for T ≲ 0.1]. Within the metallic
regime at low disorder, the standard Drude-Boltzmann
picture applies, leading to a conductivity that decreases
with temperature. This is due to strongly temperature-
dependent scattering between (largely) T-independent elec-
tronic states. This can be checked directly in Fig. 4(b), which
reports the behavior of τ and ρtyp separately.Upon increasing
the disorder strength, the scattering rate progressively
increases (τ decreases) until it becomes comparable with
the bandwidth D, cf. Fig. 4(c). At this point, denoted as
W ¼ W�, all quantities including the conductivity become
essentially temperature independent. For even stronger

disorder, the scattering time cannot be reduced further, as
it has already saturated to its minimum value.
Remarkably, the value of the conductivity atW� precisely

coincides with Mott’s minimum metallic conductivity σM,
i.e., the Mott-Ioffe-Regel (MIR) limit [37–39]. The MIR
limit thereforemarks the onset of a regimewhere transport is
not governed by how the electrons are scattered, but rather
by the strong T dependence of the electronic spectrum itself:
a mobility pseudogap opens at low T reflecting disorder-
enhanced polaronic processes [cf. Fig. 2(c) and the sub-
sequent discussion], which is progressively filled upon
increasing the temperature as shown in Fig. 4(d) (dashed
line). Moreover, the actual number of mobile charge carriers
is much smaller than the total number of electrons in the
system, as most electronic states are now localized. This
results in a “bad insulator” transport regime (Fig. 4, blue and
Fig. 1, shaded)which displays conductivity values below the
MIR limit and an insulatinglike temperature coefficient
dσ=dT > 0 but with a finite DC intercept, an unexplained
behavior that is often observed in strongly disorderedmetals
[3]. Such an intermediate regime ends at the critical point,
where a mobility gap fully opens and the conductivity
eventually vanishes at T ¼ 0 (thick line).
Lattice quantum fluctuations.—We now show that the

MIT reported in Fig. 1 is a robust phenomenon; i.e., a
genuine transition exists from ω0 ¼ 0 all the way to
ω0 → ∞. The critical line obtained in the static limit is
shown in the inset of Fig. 1. In the opposite limit, ω0 → ∞
(λ finite), the electron-phonon interaction becomes ineffec-
tive for spinless electrons. The transition therefore occurs at

the noninteracting valueWð0Þ
c independent of λ.We conclude

that aMITmust exist for any finiteω0, located betweenW
ð0Þ
c

and the critical line for classical phonons. This is indeed
what we find numerically [Figs. 1 and 2(e), insets].
Increasing values of ω0 produce a slight stabilization of
the metal; yet, at the coupling strengths attainable with the
NCA, theMIT remains very close to the one calculated with
classical phonons. Sizable differences are expected instead
as one approaches the clean limitW ¼ 0. There, it is known
that quantum fluctuations push theMIT to λ → ∞, while the

classical limit yields a transition at λð0Þc ¼ 0.67 [22]. A
sketch of the behavior inferred from the above consider-
ations is shown as a dashed line in Fig. 1.
The key phenomenon that we unveiled, i.e., the corre-

lated response of the lattice to the local random potentials,
is also preserved at finite ω0: as shown in Fig. 3(b), the
distribution of the self-consistent field is essentially
unchanged by phonon quantum fluctuations at large ϵ,
and the gap in the distribution of u remains finite, although
somewhat renormalized as compared to the static phonon
case. In more refined treatments, such a gap could be
partially filled by exponential tails [26,40,41].
Concluding remarks.—In this Letter, we provided a clear

microscopic picture of disorder-driven MITs in deformable

(a) (b)

(c)

(d)

FIG. 4. Conductivity and Mott limit.—(a) σðTÞ in the weak-
coupling regime, λ ¼ 0.05, expressed in units of σM (see text);
from top to bottom, W ¼ 0.0, 0.125, 0.25, 0.5; 0.8, 1.05, 1.16,
1.3, 1.5. For W ¼ Wc ¼ 1.16 (bold) we also show the power-
law extrapolation to T ¼ 0 (dotted). The shaded area is the
experimental range 100–250 μΩ cm where the TCR is seen to
vanish in most single-band materials [36,37]. (b)–(d) Scattering
time and order parameter for representative parameters in the
metallic phase (W ¼ 0.125), at the Mott-Ioffe-Regel limit
(W ¼ W� ¼ 0.8) and at the MIT (W ¼ Wc). Both quantities
are expressed in units of 1=D.
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lattices, where disorder-enhanced interaction effects domi-
nate all physical processes. Such interplay is revealed most
prominently in the emergence of an intermediate regime
that separates the conventional metal from the insulator,
where the system still conducts at T ¼ 0, but it displays
resistivity that decreases with temperature, i.e., negative
TCR behavior. Remarkably, the boundary of this anoma-
lous transport regime, found at intermediate disorder
W ¼ W�, is marked precisely by the resistivity reaching
the Mott-Ioffe-Regel limit, as argued in very early works by
Mott. The actual MIT point is reached at somewhat
stronger disorder W ¼ Wc > W�, and it displays all sig-
natures of a T ¼ 0 quantum critical point, with power-law
scaling behavior of all quantities. Our findings, therefore,
reconcile Mott’s concept of “minimum metallic conduc-
tivity,” and the ideas based on the scaling theory of
localization of Anderson and followers. We showed that
both ideas apply, but they do so in two physically distinct
regimes within the phase diagram. Our results open the
road to properly interpret many puzzling experiments in
disordered metals, including the long-standing puzzle of
“Mooij correlations” [3,36], which remains a challenge for
future work.

V. D. was supported by the NSF Grant No. DMR-
1410132. D. D. S. acknowledges the German Research
Foundation (DFG-SFB 1170). S. C. and D. D. S. acknowl-
edge CINECA ISCRA-C HPC Project No. HP10C5W99T
and the SuperMUC system at the Leibniz Supercomputing
Centre under the Project-ID pr94vu.

[1] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[2] F. Evers and A. D. Mirlin, Rev. Mod. Phys. 80, 1355 (2008).
[3] P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287

(1985).
[4] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,

Rev. Mod. Phys. 68, 13 (1996).
[5] E. Miranda and V. Dobrosavljevic, Rep. Prog. Phys. 68,

2337 (2005).
[6] A. A. Pastor and V. Dobrosavljević, Phys. Rev. Lett. 83,

4642 (1999).
[7] V. Dobrosavljević and G. Kotliar, Phys. Rev. Lett. 78, 3943

(1997).
[8] Z. Fisk and G.W. Webb, Phys. Rev. Lett. 36, 1084 (1976).
[9] T. Siegrist, P. Jost, H. Volker, M. Woda, P. Merkelbach, C.

Schlockermann, and M. Wuttig, Nat. Mater. 10, 202 (2011).
[10] N. F. Mott, Metal-Insulator Transition (Taylor & Francis,

London, 1990).
[11] V. Dobrosavljević, N. Trivedi, and J. M. Valles Jr.,

Conductor Insulator Quantum Phase Transitions (Oxford
University Press, Oxford, 2012).

[12] P. W. Anderson, Nature (London), Phys. Sci. 235, 163
(1972).

[13] H. Shore, L. Sander, and L. Kleinman, Nature (London),
Phys. Sci. 245, 44 (1973).

[14] M. H. Cohen, E. N. Economou, and C. M. Soukoulis,
Phys. Rev. Lett. 51, 1202 (1983).

[15] Y. Shinozuka, J. Non-Cryst. Solids 77–78, 21 (1985).
[16] V. Dobrosavljević, A. A. Pastor, and B. K. Nikolić,

Europhys. Lett. 62, 76 (2003).
[17] C. E. Ekuma, H. Terletska, K.-M. Tam, Z.-Y. Meng, J.

Moreno, and M. Jarrell, Phys. Rev. B 89, 081107 (2014).
[18] Y. Zhang, H. Terletska, C. Moore, C. Ekuma, K.-M. Tam, T.

Berlijn, W. Ku, J. Moreno, and M. Jarrell, Phys. Rev. B 92,
205111 (2015).

[19] S. Ciuchi, F. de Pasquale, S. Fratini, and D. Feinberg,
Phys. Rev. B 56, 4494 (1997).

[20] S. Fratini and S. Ciuchi, Phys. Rev. Lett. 91, 256403 (2003).
[21] A. J. Millis, J. Hu, and S. Das Sarma, Phys. Rev. Lett. 82,

2354 (1999).
[22] A. J. Millis, R. Mueller, and B. I. Shraiman, Phys. Rev. B

54, 5389 (1996).
[23] S. Ciuchi and F. de Pasquale, Phys. Rev. B 59, 5431 (1999).
[24] R. Alben, M. Blume, H. Krakauer, and L. Schwartz,

Phys. Rev. B 12, 4090 (1975).
[25] A. Alvermann, F. X. Bronold, and H. Fehske, Phys. Status

Solidi C 1, 63 (2004).
[26] M. Capone and S. Ciuchi, Phys. Rev. Lett. 91, 186405

(2003).
[27] D. Di Sante and S. Ciuchi, Phys. Rev. B 90, 075111 (2014).
[28] Y. F. Nie, D. Di Sante, S. Chatterjee, P. D. C. King, M.

Uchida, S. Ciuchi, D. G. Schlom, and K.M. Shen,
Phys. Rev. Lett. 115, 096405 (2015).

[29] M. C. O. Aguiar, V. Dobrosavljević, E. Abrahams, and G.
Kotliar, Phys. Rev. Lett. 102, 156402 (2009).

[30] G. Sangiovanni, P. Wissgott, F. Assaad, A. Toschi, and K.
Held, Phys. Rev. B 86, 035123 (2012).

[31] A. Richardella, P. Roushan, S. Mack, B. Zhou, D. A. Huse,
D. D. Awschalom, and A. Yazdani, Science 327, 665
(2010).

[32] S. Mahmoudian, S. Tang, and V. Dobrosavljević, Phys. Rev.
B 92, 144202 (2015).

[33] S. M. Girvin and M. Jonson, Phys. Rev. B 22, 3583 (1980).
[34] R. Abou-Chacra, D. J. Thouless, and P.W. Anderson,

J. Phys. C 6, 1734 (1973).
[35] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.118.036602 for the
derivation of the interpolation formula Eq. (2).

[36] C. C. Tsuei, Phys. Rev. Lett. 57, 1943 (1986).
[37] N. Hussey, K. Takenaka, and H. Takagi, Philos. Mag. 84,

2847 (2004).
[38] O. Gunnarsson, M. Calandra, and J. E. Han, Rev. Mod.

Phys. 75, 1085 (2003).
[39] We define the Mott limit σM, as usual, as the value of the

Drude conductivity when the mean-free-path l equals the
lattice spacing a. In a cubic lattice, this corresponds to a
scattering rate ℏ=τ ¼ D=3. For a concentration x ¼ 1=2 of
spinless electrons as considered in this work we obtain in
our units σM ¼ σ0=ð2πÞ. The conductivity σ0 is fixed by
taking a representative value a ¼ 3 Å.

[40] P. Benedetti and R. Zeyher, Phys. Rev. B 58, 14320 (1998).
[41] M. Capone, P. Carta, and S. Ciuchi, Phys. Rev. B 74,

045106 (2006).

PRL 118, 036602 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

20 JANUARY 2017

036602-5

http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/RevModPhys.80.1355
http://dx.doi.org/10.1103/RevModPhys.57.287
http://dx.doi.org/10.1103/RevModPhys.57.287
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1088/0034-4885/68/10/R02
http://dx.doi.org/10.1088/0034-4885/68/10/R02
http://dx.doi.org/10.1103/PhysRevLett.83.4642
http://dx.doi.org/10.1103/PhysRevLett.83.4642
http://dx.doi.org/10.1103/PhysRevLett.78.3943
http://dx.doi.org/10.1103/PhysRevLett.78.3943
http://dx.doi.org/10.1103/PhysRevLett.36.1084
http://dx.doi.org/10.1038/nmat2934
http://dx.doi.org/10.1038/235163a0
http://dx.doi.org/10.1038/235163a0
http://dx.doi.org/10.1038/physci245044a0
http://dx.doi.org/10.1038/physci245044a0
http://dx.doi.org/10.1103/PhysRevLett.51.1202
http://dx.doi.org/10.1016/0022-3093(85)90601-5
http://dx.doi.org/10.1209/epl/i2003-00364-5
http://dx.doi.org/10.1103/PhysRevB.89.081107
http://dx.doi.org/10.1103/PhysRevB.92.205111
http://dx.doi.org/10.1103/PhysRevB.92.205111
http://dx.doi.org/10.1103/PhysRevB.56.4494
http://dx.doi.org/10.1103/PhysRevLett.91.256403
http://dx.doi.org/10.1103/PhysRevLett.82.2354
http://dx.doi.org/10.1103/PhysRevLett.82.2354
http://dx.doi.org/10.1103/PhysRevB.54.5389
http://dx.doi.org/10.1103/PhysRevB.54.5389
http://dx.doi.org/10.1103/PhysRevB.59.5431
http://dx.doi.org/10.1103/PhysRevB.12.4090
http://dx.doi.org/10.1002/pssc.200303610
http://dx.doi.org/10.1002/pssc.200303610
http://dx.doi.org/10.1103/PhysRevLett.91.186405
http://dx.doi.org/10.1103/PhysRevLett.91.186405
http://dx.doi.org/10.1103/PhysRevB.90.075111
http://dx.doi.org/10.1103/PhysRevLett.115.096405
http://dx.doi.org/10.1103/PhysRevLett.102.156402
http://dx.doi.org/10.1103/PhysRevB.86.035123
http://dx.doi.org/10.1126/science.1183640
http://dx.doi.org/10.1126/science.1183640
http://dx.doi.org/10.1103/PhysRevB.92.144202
http://dx.doi.org/10.1103/PhysRevB.92.144202
http://dx.doi.org/10.1103/PhysRevB.22.3583
http://dx.doi.org/10.1088/0022-3719/6/10/009
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.036602
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.036602
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.036602
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.036602
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.036602
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.036602
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.036602
http://dx.doi.org/10.1103/PhysRevLett.57.1943
http://dx.doi.org/10.1080/14786430410001716944
http://dx.doi.org/10.1080/14786430410001716944
http://dx.doi.org/10.1103/RevModPhys.75.1085
http://dx.doi.org/10.1103/RevModPhys.75.1085
http://dx.doi.org/10.1103/PhysRevB.58.14320
http://dx.doi.org/10.1103/PhysRevB.74.045106
http://dx.doi.org/10.1103/PhysRevB.74.045106

