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We experimentally demonstrate coherent control of a quantum system, whose dynamics is chaotic in the
classical limit. Interaction of diatomic molecules with a periodic sequence of ultrashort laser pulses leads to
the dynamical localization of the molecular angular momentum, a characteristic feature of the chaotic
quantum kicked rotor. By changing the phases of the rotational states in the initially prepared coherent
wave packet, we control the rotational distribution of the final localized state and its total energy. We
demonstrate the anticipated sensitivity of control to the exact parameters of the kicking field, as well as its
disappearance in the classical regime of excitation.
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Control of molecular dynamics with external fields is a
long-standing goal of physics and chemistry research.
Great progress has been made by exploiting the coherent
nature of light-matter interaction. At the heart of coherent
control is the interference of quantum pathways leading to
the desired target state from a well-defined initial state [1].
In this context, an exponential sensitivity to the initial
conditions, characteristic for classically chaotic systems,
poses an important question about the controllability in the
quantum limit (for a comprehensive review of this topic,
see Ref. [2]). As the underlying classical rovibrational
dynamics of the majority of large polyatomic molecules is
often chaotic, the answer to this question has far reaching
implications for the ultimate prospects of using coherence
to control chemical reactions.
Success in steering the outcome of chemical reactions by

means of feedback-based adaptive algorithms [3], using the
methods of optimal control theory [4], proved that such
control is feasible. Theoretical works on quantum control-
lability in the presence of chaos, both in general [5] and with
regard to specific molecular systems [6,7], pointed at the
importance of coherent evolution. To investigate the roles of
coherence, chaoticity, and quantumness further, Gong and
Brumer considered a paradigm system for studying quan-
tum effects on classically chaotic dynamics—the quantum
kicked rotor (QKR) [2,6,8]. The latter is known to exhibit
dynamical localization (closely related to Anderson locali-
zation in disordered solids [9,10]), in which quantum
interferences suppress the classically chaotic diffusion after
the “quantum break time” [11,12]. Gong and Brumer
demonstrated that the energy of the localized state can
be controlled by modifying the initial wave packet. They
showed that quantum coherences, as opposed to the
classical structures in the rotor’s phase space [13], are
indeed responsible for the achieved control over the chaotic
dynamics of the QKR.
In this report, we present an experimental proof of the

Gong-Brumer control scheme. Following a theoretical

proposal of Averbukh and co-workers [14,15], we inves-
tigate the dynamics of true quantum rotors by exposing
diatomic molecules to a periodic sequence of ultrashort
laser pulses. A number of representative QKR effects have
already been studied in laser-kicked molecules [16–20],
including our recent observation of the formation of
localized rotational states under periodic kicking [21].
Here, we prepare the molecules in a coherent rotational
wave packet and control the localization process by varying
the relative phases of the initial states. The preparation is
executed by preceding the long localizing pulse sequence
(12 pulses) with a shorter sequence of 3 pulses tuned to a
fractional quantum resonance [Fig. 1(a)]. The latter
ensures efficient redistribution of population among a
small number of low-lying rotational levels [17,20]. The
time delay ΔT between the two pulse trains, and hence the
relative quantum phases of the initial states, serves as a
“control knob” defining the amount of the rotational
energy, absorbed before its further growth is suppressed
by localization.
The interaction of a diatomic molecule with a periodic

train of N linearly polarized laser pulses, not resonant with
any electronic transition, is described by the following
Hamiltonian:

Ĥ ¼ Ĵ2

2I
− ℏP cos2ðθÞ

XN−1

n¼0

δðt − nTÞ; ð1Þ

where θ is the angle between the molecular axis and the
laser polarization axis, Ĵ is the angular momentum oper-
ator, I is the molecular moment of inertia, T is the train
period, and ℏ is the reduced Planck constant. The laser-
induced rotational dynamics of a molecule is determined by
two dimensionless parameters: the effective Planck con-
stant τ¼ℏT=I and the kick strength P¼Δα=ð4ℏÞR E2ðtÞdt,
where Δα is the molecular polarizability anisotropy and
EðtÞ is the temporal envelope of the pulse. The effective
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Planck constant determines whether the dynamics of the
kicked rotor is affected by its quantum nature (τ ≳ 1) or
approaches the classical limit (τ → 0) [6]. The kick strength
reflects the typical amount of angular momentum (in units
of ℏ) transferred from the laser pulse to the molecule [22].
In the classical limit, the dynamics is governed by a single
stochasticity parameter K ¼ τP. For K ≳ 5, the underlying
classical dynamics of a kicked rotor is globally chaotic and
exhibits unbounded diffusive energy growth [23]. In the
case of a laser-kicked homonuclear molecule, this threshold
reduces to K ≳ 2.5 and is satisfied in all of our exper-
imental realizations.
The discreteness of the rotational spectrum of the QKR

results in quantum resonances whenever τ ¼ 2πp=q, where
p and q are integers [12,14,24]. Equivalently, this condition
can be expressed as T=Trev ¼ p=q, with Trev ¼ 2πI=ℏ
being the so-called revival period. Tuning the train period

to match a quantum resonance enables an efficient exci-
tation of multiple rotational states with growing (from kick
to kick) rotational energy. On the other hand, away from
quantum resonances, dynamical localization suppresses the
rotational energy growth after the quantum break time. In
this work, we employ the resonant driving of the quantum
kicked rotors to control their further localization by a
nonresonant pulse train.
A sequence of 15 laser pulses of 130 fs full width at half

maximum (FWHM) at a kick strength of P ¼ 3.8 per pulse
is generated in an optical system described in Ref. [25]; for
details see the Supplemental Material [26]. The sequence
consists of two independent parts, shown in Fig. 1(a). First
three “preparation” pulses are separated in time by
Tpre ¼ 0.237 Trev, close to a fractional quantum resonance
at T ¼ 1=4 Trev, and are used to excite a broad rotational
wave packet [20]. The period T loc of the second “localiz-
ing” train of 12 pulses is chosen between 0.26 Trev and
0.27 Trev, corresponding to the effective Planck constant of
1.6 < τ < 1.7. This window is chosen so as to avoid strong
fractional quantum resonances of low orders. The corre-
sponding range of the stochasticity parameter 6.2<K< 6.5
lies deep in the classically chaotic regime. The time delay
between the two pulse sequences is scanned around the
quarter revival time, between ΔT=Trev ¼ 0.223 and 0.284,
where we anticipate the highest degree of control, as
discussed below.
The excitation light is focused in a gas of oxygen

molecules [26], rotationally cooled to 25 K in a supersonic
expansion. Coherent molecular rotation modulates the
refractive index of the gas and results in the appearance
of Raman sidebands in the spectrum of a weak narrow-band
probe pulse. Each Raman peak is shifted from the central
probe frequency by the amount that depends on the
rotational quantum number J, while its intensity IJ is
proportional to the square of the population of the corre-
sponding level PJ [26]. The latter allows us to determine
the rotational energy, absorbed by the molecules, asP

JEJPJ, where EJ ¼ BJðJ þ 1Þ with the rotational con-
stant B. To compare the experimental findings with the
results of numerical simulations, we solve the Schrödinger
equation, using the above described Hamiltonian (1).
Our main result is shown in Fig. 1(b), where we plot the

rotational energy of oxygen molecules, measured after each
of 15 laser pulses for a number of pulse trains, all with
T loc ¼ 0.267 Trev. By design, the first three preparation
pulses in all trains lead to a fast growth of molecular energy.
When the delay ΔT to the next twelve pulses is set to
ΔT1 ¼ 0.243 Trev (upper green lines), the energy growth
continues for a few more kicks and ceases after that,
reflecting the dynamical localization of the molecular
angular momentum [21]. Different thin lines correspond
to different experimental runs, with their average indicated
by the thick green curve. On the other hand, when the very
same localizing pulse sequences are separated from the

(a)

(b)

(c)

FIG. 1. (a) Train of fifteen laser pulses, used in this work,
with three variable time constants indicated by horizontal
arrows. (b) Rotational energy of oxygen molecules as a function
of the number of kicks N. Shown are thirteen experimental
realizations (dotted lines) for each of the two control scenarios
corresponding to a maximum (upper green lines, at ΔT1 ¼
0.243 Trev) and a minimum in rotational energy (lower red lines,
at ΔT2 ¼ 0.264 Trev). The corresponding average values are
plotted as the green solid line and the red dashed line, respec-
tively, with error bars representing 1 standard deviation. In
comparison, the numerical calculations are indicated by con-
nected green circles (ΔT1) and red squares (ΔT2). (c) Numerically
calculated dependence of the final rotational energy on the delay
ΔT. Two vertical lines mark the experimental delays ΔT1 (solid
green) and ΔT2 (dashed red).
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preparation pulses byΔT2 ¼ 0.264 Trev, the suppression of
the energy growth occurs much earlier and results in a
lower (by 40� 7%) energy of the final localized states
(lower red lines).
The results of the equivalent numerical calculations are

shown in Fig. 1(b) by connected green circles for the
delay ΔT1 and red squares for ΔT2. Despite the used
approximation of infinitely short δ kicks, the numerical
results are in good qualitative agreement with the obser-
vations. We further exploit the numerical model for
calculating the dependence of the rotational energy on
the single control parameter ΔT, plotted in Fig. 1(c).
The availability of control is apparent around fractional
revivals, ΔT=Trev ¼ 1=4, 1=2, 3=4 and 1, which suggests
an intuitive picture of its mechanism. The first kick from the
localizing pulse train either continues the quantum-reso-
nant excitation of the preparation sequence or opposes it,
affecting the energy level, at which the rest of the train
localizes the system. The dephasing of the rotational states
in the prepared wave packet leads to a loss of control
between the fractional revivals. The two vertical lines mark
our experimental values of ΔT in Fig. 1(b).
The described control mechanism is also evident from

the experimentally retrieved average distributions of the
localized angular momentum, shown in Fig. 2 by thick lines
with no markers. Solid green and dashed red traces
correspond to the localized wave packets with higher
and lower rotational energies, respectively. As the higher
energy clearly correlates with the broader wave packet, the
achieved control can be attributed to populating different
sets of quasienergy (Floquet) states [15]. Because each
wave packet contains more than a single quasienergy state,

the distributions are not expected to (and, indeed, do not)
exhibit exponential line shapes [8].
Numerically calculated population distributions, corre-

sponding to the experimental parameters for the high and
low energy localized wave packets, are shown in Fig. 2
with connected green circles and red squares, respectively.
Despite the approximations in the population retrieval from
the measured Raman spectra, the simulated and experi-
mental distributions show qualitative agreement down
to the instrumental noise floor around PJ ≈ 5 × 10−3

(see Ref. [26]).
The stability of the implemented control scheme with

respect to the underlying classically chaotic dynamics is
analyzed in Fig. 3. In the top row (a) we show the
dependence of the rotational energy on the period of the
localizing train T loc. As earlier, the value of the control
parameter is either ΔT1 ¼ 0.243 Trev (sold green line) or
ΔT2 ¼ 0.264 Trev (dashed red line). Shown is a represen-
tative set for five values of T loc=Trev: (1) 0.260, (2) 0.261,
(3) 0.263, (4) 0.267 and (5) 0.270. The respective degree of
control, defined as 2ðE1 − E2Þ=ðE1 þ E2Þ with Ei being
the final rotational energy for the delay ΔTi, is shown at the
bottom of each plot. We observe wide fluctuations from a
total loss of control in the panels 1(a),3(a), and 5(a) to the
maximum control of about 40% in panel (4a).
High sensitivity of the QKR dynamics to the exact train

period is well expected [13] and can be attributed to the
existence of fractional resonances, T loc=Trev ¼ p=q, where
quantum diffusion is accelerated. Yet despite the observed
sensitivity of the control, we found that it can be success-
fully regained by optimizing the control parameter, i.e., the
delay time ΔT, for each individual realization of the
localizing train. In the bottom row (b) of Fig. 3 we

FIG. 2. Localized population distribution of oxygen molecules
excited by a train of 15 pulses with P ¼ 3.8. The pulse train
parameters are given in the text. Plotted is the experimentally
retrieved average population distribution (thick lines, no markers)
and the numerically calculated one (markers, connected by thin
lines). Only odd values of J are allowed due to the nuclear spin
statistics of oxygen. The distributions correspond to the high
(upper green lines, ΔT ¼ ΔT1) and low (lower red lines,
ΔT ¼ ΔT2) localization energy in Fig. 1.

FIG. 3. Top row (a): rotational energy for both time delays,
ΔT1 ¼ 0.243 Trev (sold green line) and ΔT2 ¼ 0.264 Trev
(dashed red line) for a set of five different T loc periods
(1)–(5). Other parameters of the localizing train remain un-
changed. Bottom row (b): for the same five values of T loc, delays
ΔT1 and ΔT2 are individually adjusted for the, respectively,
highest and lowest energy of the localized state. The degree of
control is given in each plot. Column (4) is equivalent to Fig. 1.
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demonstrate this sustained controllability, which supports
the assumption of its coherent nature. We note that our
numerical calculations of the molecular response to the
localizing train of infinitely short δ kicks (not plotted) show
more stable control, which suggests that the finite exper-
imental pulse width may also contribute to the observed
sensitivity.
To distinguish between the quantum and classical

mechanisms of the achieved control, we analyze its
dependence on the effective Planck constant τ. Smaller
values of τ, realized with shorter periods of the pulse train,
take us closer to the classical limit (i.e., the well-known
standard map [11]), at which the dynamics is less sensitive
to the discreteness of the QKR spectrum. We keep the
stochasticity parameter constant at K ¼ τP ¼ 3.4, large
enough to stay in the chaotic regime, and reduce τ while
increasing the kick strength P proportionally. As demon-
strated in Fig. 4(a), for τ ¼ 1.7, the localized states are
reached after about 10 kicks. The quantum break time is
longer than the one in Fig. 1(a) due to the lower kick
strength (P ¼ 2 vs 3.8). The maximum degree of control
(25� 3%) is established between ΔT1 ¼ 0.232 Trev (solid
green line) and ΔT2 ¼ 0.263 Trev (dashed red line).
Figure 4(b) shows the result of the same experiment with

τ ¼ 0.6 and P ¼ 5.6. The dynamics is still sensitive to ΔT,
but the rotational energy is unbounded and keeps growing
with the number of kicks. Thus, the relative energy
difference between the two cases keeps decreasing, leading
to a diminishing degree of coherent control. The apparent
energy saturation observed in the experiment at later times
(N > 10) is not of a quantum origin. Rather than having
reached the quantum break time, the excitation of rotational
states with J > 20 is suppressed because of the finite
duration of our laser pulses. An oxygen molecule occupy-
ing these states rotates by ≳90° during the length of the

pulse, which lowers its effective kick strength and prevents
further diffusion. Numerical simulations with a larger
number of δ kicks, shown in the inset, better illustrate
the transition between the controlled localization at τ ¼ 1.7
(bottom two lines) and the uncontrolled classical diffusion
at τ ¼ 0.6 (top two lines). Evidently, the latter effective
Planck constant is small enough for the persistent diffusive
energy growth to lower the controllability.
In summary, we used diatomic molecules exposed to a

sequence of strong laser pulses as true quantum kicked
rotors, well known for their chaotic dynamics. We dem-
onstrated that despite the exponential loss of memory about
the initial conditions in the classical limit, the relative
phases in the initial coherent superposition of rotational
states can be used to control the QKR dynamics in the
absence of noise or decoherence. Adjusting a single control
parameter results in the changing rotational distribution of
the final localized state: its peak is shifted from a low (here,
J ¼ 7) to a high (J ¼ 11) angular momentum. This
corresponds to a relative change in the rotational energy,
absorbed by the laser-kicked molecules. The coherent
quantum nature of the control mechanism is evident from
the demonstrated high sensitivity of the localized wave
packet to the exact period of the pulse train, and the ability
to regain control for any value of that parameter. Driving
the system closer to the classical limit, while maintaining
the same degree of stochasticity, results in a gradual loss of
control. Studying chaotic dynamics with molecular rotors
may lead to interesting unforeseen effects of centrifugal
distortion, external fields or intermolecular collisions on the
controllability of quantum chaotic systems.
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FIG. 4. Same as Fig. 1, but for two different values of the
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and higher (bottom) value of τ, for longer sequences of infinitely
short δ kicks.

PRL 118, 034101 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

20 JANUARY 2017

034101-4

http://dx.doi.org/10.1146/annurev.physchem.56.092503.141319
http://dx.doi.org/10.1146/annurev.physchem.56.092503.141319
http://dx.doi.org/10.1126/science.282.5390.919
http://dx.doi.org/10.1126/science.282.5390.919
http://dx.doi.org/10.1103/PhysRevLett.68.1500
http://dx.doi.org/10.1103/PhysRevLett.68.1500
http://dx.doi.org/10.1023/A:1026422423909
http://dx.doi.org/10.1063/1.1389306
http://dx.doi.org/10.1063/1.1389306
http://dx.doi.org/10.1063/1.1457440
http://dx.doi.org/10.1063/1.1457440
http://dx.doi.org/10.1103/PhysRevLett.86.1741
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRevLett.49.509
http://dx.doi.org/10.1103/PhysRevLett.49.509


[11] G. Casati, B. Chirikov, F. Izraelev, and J. Ford, in Stochastic
Behavior in Classical and Quantum Hamiltonian Systems,
Lecture Notes in Physics, edited by G. Casati and J. Ford
(Springer, Berlin, 1979), Vol. 93, p. 334.

[12] F. M. Izrailev and D. L. Shepelyanskii, Theor. Math. Phys.
43, 553 (1980).

[13] E. A. Shapiro, M. Spanner, and M. Y. Ivanov, J. Mod. Opt.
54, 2161 (2007).

[14] J. Floß and I. Sh. Averbukh, Phys. Rev. A 86, 021401
(2012).

[15] J. Floß, S. Fishman, and I. Sh. Averbukh, Phys. Rev. A 88,
023426 (2013).

[16] J. P. Cryan, P. H. Bucksbaum, and R. N. Coffee, Phys. Rev.
A 80, 063412 (2009).

[17] S. Zhdanovich, C. Bloomquist, J. Floß, I. Sh. Averbukh,
J. W. Hepburn, and V. Milner, Phys. Rev. Lett. 109, 043003
(2012).

[18] J. Floß, A. Kamalov, I. Sh. Averbukh, and P. H. Bucksbaum,
Phys. Rev. Lett. 115, 203002 (2015).

[19] A. Kamalov, D. W. Broege, and P. H. Bucksbaum, Phys.
Rev. A 92, 013409 (2015).

[20] M. Bitter and V. Milner, Phys. Rev. A 93, 013420 (2016).
[21] M.Bitter andV.Milner, Phys. Rev. Lett. 117, 144104 (2016).
[22] S. Fleischer, Y. Khodorkovsky, Y. Prior, and I. Sh. Averbukh,

New J. Phys. 11, 105039 (2009).
[23] F. M. Izrailev, Phys. Rep. 196, 299 (1990).
[24] S. Wimberger, I. Guarneri, and S. Fishman, Nonlinearity 16,

1381 (2003).
[25] M. Bitter and V. Milner, Appl. Opt. 55, 830 (2016).
[26] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.118.034101, which in-
cludes Ref. [27], for details on the experimental setup, the
choice of molecule, and the population retrieval.

[27] A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).

PRL 118, 034101 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

20 JANUARY 2017

034101-5

http://dx.doi.org/10.1007/BF01029131
http://dx.doi.org/10.1007/BF01029131
http://dx.doi.org/10.1080/09500340701403160
http://dx.doi.org/10.1080/09500340701403160
http://dx.doi.org/10.1103/PhysRevA.86.021401
http://dx.doi.org/10.1103/PhysRevA.86.021401
http://dx.doi.org/10.1103/PhysRevA.88.023426
http://dx.doi.org/10.1103/PhysRevA.88.023426
http://dx.doi.org/10.1103/PhysRevA.80.063412
http://dx.doi.org/10.1103/PhysRevA.80.063412
http://dx.doi.org/10.1103/PhysRevLett.109.043003
http://dx.doi.org/10.1103/PhysRevLett.109.043003
http://dx.doi.org/10.1103/PhysRevLett.115.203002
http://dx.doi.org/10.1103/PhysRevA.92.013409
http://dx.doi.org/10.1103/PhysRevA.92.013409
http://dx.doi.org/10.1103/PhysRevA.93.013420
http://dx.doi.org/10.1103/PhysRevLett.117.144104
http://dx.doi.org/10.1088/1367-2630/11/10/105039
http://dx.doi.org/10.1016/0370-1573(90)90067-C
http://dx.doi.org/10.1088/0951-7715/16/4/312
http://dx.doi.org/10.1088/0951-7715/16/4/312
http://dx.doi.org/10.1364/AO.55.000830
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.034101
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.034101
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.034101
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.034101
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.034101
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.034101
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.034101
http://dx.doi.org/10.1063/1.1150614

