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Optical frequency combs have resulted in significant advances in optical frequency metrology and found
wide applications in precise physical measurements and molecular fingerprinting. A direct analogue of
frequency combs in the phononic or acoustic domain has not been reported to date. In this Letter, we report
the first clear experimental evidence for a phononic frequency comb. We show that the phononic frequency
comb is generated through the intrinsic coupling of a driven phonon mode with an autoparametrically
excited subharmonic mode. The experiments depict the comb generation process evidenced by a spectral
response consisting of equally spaced discrete and phase coherent comb lines. Through systematic
experiments at different drive frequencies and amplitudes, we portray the well-connected process of
phononic frequency comb formation and define the attributes to control the features associated with comb
formation in such a system. In addition to the demonstration of frequency comb, the interplay between the
nonlinear resonances and the well-known Duffing phenomenon is also observed.

DOI: 10.1103/PhysRevLett.118.033903

A frequency comb consists of a series of equally spaced
discrete frequencies. In recent years, optical frequency
combs [1–8] have emerged as a potential toolset spanning
diverse applications ranging from frequencymetrology [1–4]
to molecular fingerprinting [8]. Specifically, the ability to
precisely define the frequency spacing between frequency
markers and align these measurements with microwave
sources through the comb generation process has led to a
number of physical measurements [4] requiring very high
accuracy including the observation of gravitational waves
[9]. Optical frequency combs have been generated by using
the comblike mode structure of mode-locked lasers and,
more recently, through the interaction of continuous-wave
lasers with highQ toroidal optical microresonators mediated
via the Kerr nonlinearity [10].
Despite the analogies between phonons and photons, a

direct analogue for an optical comb in the phononic domain
has not been observed. However, theoretical work [11] has
recently demonstrated the possibility for the generation of
frequency combs in a phononic system represented by Fermi-
Pasta-Ulam α (FPU − α) chains [12]. Based on this theory,
the phononic frequency comb can be generated only when
a resonant mode is driven outside the dispersion band.
However, it is a nontrivial experimental exercise to meet
the comb excitation threshold with weaker signal levels
associatedwith drive frequencies outside the dispersion band.
In this Letter, we overcome this barrier by utilizing a piezo-
electrically driven micromechanical resonator with improved
electromechanical coupling leading to enhanced signal levels.
This enables the first experimental realization of a phononic
frequency comb in amicrofabricated structure bearing similar
traits to those predicted by numerical simulations performed
on a FPU − α chain [11]. Additionally, our resonator also
captures the onset of Duffing nonlinear mechanism [13–15]
and its interference with the nominal phononic comb.

The nonlinear three-wave mixing mechanism resulting
in the generation of frequency combs is theoretically
facilitated through the excitation of nonlinear resonances
of various orders. Specifically, in direct nonlinear reso-
nance (DNR) as termed in Ref. [11], the interaction
between the eigenmode and driven phonon mode in a
nonlinear lattice paves the way for the formation of
equispaced spectral lines at a characteristic frequency
Δω set by the drive frequency and the intrinsic phonon
mode frequencies. Mathematically, the DNR phenomenon
can be modeled through the coupled dynamics,

Q̈1 ¼ −ω2
1Q1 − 2ζ1ω1

_Q1 þ fd cosðωdtÞ þ α11Q2
1

þ β111Q3
1 þ β122Q1Q2

2; ð1:1Þ

Q̈2 ¼ −ω2
2Q2 − 2ζ2ω2

_Q2 þ α12Q1Q2

þ α22Q2
2 þ β112Q2

1Q2; ð1:2Þ

where fd is the displacement or drive level of drive tone ωd,
αij and βijk are quadratic and cubic coupling coefficients,
and ζi¼1;2 are the damping coefficients. When the fre-
quency of external driving ωd matches the resonant mode
frequency ω1 and at high enough values of drive, the
resonant mode ωd and autoparametrically triggered sub-
harmonic mode ωd=2 are only excited with no additional
spectral lines. Once the drive frequency ωd is set beyond
the dispersion band, at high enough values of drive fd, the
mode Q2 is autoparametrically triggered at the frequency
ω1=2. This, in turn, results in a response for Q1 at ω1 and
through higher-order nonlinear coupling between Q1 and
Q2 as defined in Eqs. (1.1) and (1.2), the near-resonant
terms of cos ðω1 þ pðωd − ω1ÞÞt;pϵZ are generated (see
the Supplemental Material [16] Sec. S1 for the analysis).
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The eigenmode excited at ω1 is also referred to as the
“comb mode” in this Letter.
To validate the aforementioned theory, a microscopic 1D

extensional mode resonator of dimensions 1100 × 350×
11 μm3 has been considered as the experimental platform
for this work [Fig. 1(a) and Supplemental Material [16]
Fig. S1]. This structure is fabricated using a standard AlN-
on-Si foundry process [17]. In this process, to start with, a
0.5 μm thick AlN film is deposited on the SOI wafer. The
AlN film is the transducer material employed in the
piezoelectrically excited micromechanical device. To en-
able electrical interfacing, an additional Al metal layer of
1 μm thickness is patterned. Finally, the bulk SOI wafer is
etched by the deep reactive ion etching process to realize
the freestanding microstructures. The fabricated Si chip
(11 × 11 mm2) containing a micromechanical resonator is
then electrically packaged in a ceramic leadless chip carrier
(LCC44 Spectrum Semiconductors) for testing.
The piezoelectric resonator is then driven by electrical

signals derived from a waveform generator (Agilent
335ARB1U) as shown in the Fig. 1(a), and the mechanical

response is optically recorded by a Polytec laser Doppler
vibrometer (LDV). At an elevated drive level upon crossing
a specific threshold value, the spectrum analyzer and LDV
measurements prove the existence of an autoparametrically
generated subharmonic mode [18] [Fig. 1(a)]. Here, the
displacement profile corresponding to the subharmonic
mode can be conceived as a prestressed framework for
the level of coupling between the drive frequency and
intrinsic resonance mode [Fig. 1(b)]. That being said, the
propensity for comb generation is higher at the antinodes of
the subharmonic mode. Additionally, Fig. 1(b1) provides
evidence for the phase coherency of equidistant comb lines.
In this Letter, we systematically report the experimental
results carried out in the extensional resonator based test bed
to understand the frequency comb generation and discuss
the opportunities for active tuning of the comb structure.
The drive amplitude dependence on the phononic comb

for an off-resonant drive frequency of 3.862 MHz is
examined first [Fig. 2(A)]. Mere drive tone is present at
low enough drive power levels<3 dBm. However, upon the
drive power level meeting a certain threshold value of

FIG. 1. Observation of the phononic frequency comb. (a) Left: Signal SðωdÞ is applied on a free-free beam microstructure. Right: An
intrinsic parametric excitation of the subharmonic mode (out of plane) at the drive power level 3 dBm of in-plane extensional mode. (b1)
The pulse train corresponding to the phase coherent frequency comb at the drive power level 5 dBm, (b2) surface average displacement
spectrum demonstrating comb formation, (b3) the subharmonic mode shape, (b4) the displacement at the node of the subharmonic mode
indicating the absence of the frequency comb response, and (b5) the displacement at the antinode of the subharmonic mode indicating
the presence of the frequency comb response.
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∼3.5 dBm, the comb eventually gets generated. With a
further increase in drive power, the comb structure extends
into higher orders. In other words, the spectral bandwidth of
the frequency comb is directly related to the drive power
level. In practice, such bandwidths for a particular drive
power level can be expanded via design strategies to reduce
the onset of the initiation threshold for parametric resonance
[19]. The steps in Fig. 2(A) depict the existence of inherent
thresholds for each higher-order spectral line. The depend-
ence of the drive frequency on the comb generation thresh-
olds is presented in Fig. 2(B). When the drive frequency is
operated within the dispersion band (∼3.8590 MHz)
(<3.8602 MHz), the comb is not formed at even
extreme power levels as high as 23.99 dBm. This exem-
plifies the absence of the comb generation pathway in the
“dispersion band” regime. Nonetheless, outside this range
>3.8602 MHz, the drive power level threshold and drive
frequency follow a direct relationship, corresponding to the
Lorentzian decay of the resonant peak. Figures 2(a)–2(g)
show the underlying spatial manipulation of phonons
from the spectral line ωd to the comb lines. Spatially, the
phonons at the comb frequencies are present at the antinodes
of the autoparametrically driven subharmonic mode
[Figs. 2(a) and 2(b) and 2(e)–2(g)] with a concomitant
reduction in the drive phonon population at these spatial
locations [Fig. 2(d)]. Additionally, it is also interesting to
note that the tone at the natural frequency ω1 also takes up
the comb-mode-specific spatial vibration pattern [Fig. 2(c)].
In other words, the tone at ω1 is always excited along with
the drive tone ωd during the comb generation process.

Hence, the reported frequency comb mechanism can enable
a new approach for resonance frequency estimation in
micro- and nano-mechanical resonant sensors.
Under high enough drive amplitude conditions

(> ∼ 5 dBm), there is evidence of the Duffing nonlinear
mechanism or fold-over effect [Fig. 3(a)] [13–15]. Here, the
frequency of the driven mode is amplitude dependent, which
results in increased comb spacing corresponding to the
drive amplitude [Fig. 3(a)]. To study the dependence of
“detuning” of the drive tone on both DNR and Duffing
influencedDNR regimes, the underlying frequency responses
have to be juxtaposed. Yet, at a constant drive power level, the
number of comb lines produced can be dependent on the
detuning level of the drive. Hence, the nature of the comb
structure for different detuning levels cannot be directly
compared. Alternatively, by standardizing to five comb lines,
the resulting frequency contours are obtained [Figs. 3(b) and
3(d)]. This standardization, however, results in the Duffing
phenomenon at higher drive frequencies >3.8622 MHz, as
the higher threshold for reaching five comb lines directly
meets the Duffing criterion [Figs. 3(b) and 3(d)]. In DNR, the
far-detuned drive frequency results in larger comb spacing
[Fig. 3(d)]. In contrast, the comb spacing in Duffing influ-
enced DNR remains the same, and the overall comb collec-
tively gets shifted with the drive frequency shift. This
crossover can be explained by the fold over of the resonant
peak resulting in frequency renormalization ( ~ω0) [11]. The
influence of the Duffing mechanism on the nominal DNR is
guided by the intrinsic Duffing and DNR thresholds. An
active tuning of these attributes in a microstructure [20] will

FIG. 2. High-order phononic frequency combs. (A) The drive power level-frequency contour indicating the thresholds T1, T2, T3, T4

for high-order frequency comb generation. (a)–(g) The out-of-plane displacement profiles at different frequencies on both sides of the
dispersion curve. Here, Figs. 2(c) and 2(d) correspond to the nominal spatial vibration pattern of the comb mode, and Figs. 2(a) and 2(b)
and 2(f) and 2(g) correspond to the spatial vibration pattern of the parametrically excited mode. rms: The rms displacement profiles in
the frequency range 3.6–4.2 MHz at the drive frequency 3.862 MHz and drive power level ¼ 4.5 dBm. (B) The threshold T1 as the drive
frequency is detuned from resonance.
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enable independent control over both DNR and Duffing
mechanisms and consequent tailoring of the frequency comb
in both regimes. In Fig. 3(a), there is additional evidence
for the “filling in” of multiple spectral lines within the comb
(cyan regions) in the Duffing influenced DNR regime. This
intriguing high-generation comb phenomenon needs inves-
tigation, even though this result falls out of the scope of this
Letter.
While the individual amplitude and frequency depend-

ences are explored in both DNR and DNR-Duffing regimes,
the interplay between these two parameters also reveals an
additional intriguing property. As seen before, the frequency
detuning threshold for frequency comb generation is de-
pendent on the dispersion bandwidth. Within the dispersion
band, the comb is not generated. Outside the band, the
amplitude required for comb generation continuously
increases as the drive frequency is increasingly spaced
away from the resonance. This clearly signifies that the
quality factor of the resonance peak and resonant transcon-
ductance are strong determinants of frequency comb gen-
eration. A microstructure with a tunable quality factor and
transconductance [21] can, therefore, enable active control
over the dynamics of phononic comb generation.
We now present a brief discussion on the dependence of

the spectral bandwidth corresponding to the frequency comb
with the drive power level and detuning. For a given
detuning level, the bandwidth increases in discrete steps
with the drive power level. However, there exists a nontrivial
relationship between the bandwidth and detuning level. A
far-detuned frequency comb, in spite of having a larger comb
width, will only have fewer comb lines. On the other hand, a
near-detuned frequency comb, in spite of having a larger
comb density, has a smaller comb width. Therefore, to
achieve an optimal spectral bandwidth, the trade-off between
the comb density and width must be resolved. From a
technological perspective, such comb bandwidths can poten-
tially be increased through parametric resonator design
strategies and reduced damping conditions [19].

Figure 4(a) maps the “dispersion band,” “phononic
comb,” and “small signal” regimes in the driving response.
For studying the underlying spatial aspects in each of these
regimes, the rms surface displacement averaged over the
frequency range of 3.6 to 4.2 MHz (using LDV measure-
ments) is compared. Figure 4(b) shows the rms vibration
patterns for different drive frequencies. In the dispersion
band (at 3.858 MHz), since there is no comb formation, the
resonant mode shape is not altered, and, hence, the comb-
mode-specific vibration pattern is only observed. Contrary
to this, in the phononic comb regime (at 3.856 and
3.862 MHz), the subharmonic-mode-specific vibration
pattern is observed following the phonon manipulation
from the drive frequency to the comb spectral lines
[Figs. 2(a)–2(g)]. In the small signal regime, similar to
the dispersion band, the comb is not formed at normal drive
levels, and the resonant mode pattern is preserved. To
understand the relevance of drive power levels on the
spatial aspects of comb formation, the underlying rms
vibration patterns corresponding to drive frequency
3.862 MHz are compared. As seen in Fig. 4(c), the rms
vibration patterns gradually shift from the comb-mode-
specific to the subharmonic-mode-specific vibration pattern
following phonon manipulation.
We now recapitulate the traits concomitant with the

different regimes of operation in the phononic comb. In the
dispersion band regime, there is no comb formation.
Therefore, only the tones corresponding to ωd and ωd=2
are observed. Also, the rms spatial displacement pattern
around ωd corresponds to the comb-specific vibration
pattern [Fig. 4(b)]. In the phononic comb regime, additional
spectral lines are also observed around ωd and, hence, the
rms spatial displacement pattern around ωd corresponds to
a merger of the comb-mode-specific vibration pattern and
the parametrically excited subharmonic-mode-specific
vibration pattern [Fig. 4(b)]. In the small signal regime,
comb excitation is not observed, and only the tone ωd is
visible. The rms spatial displacement pattern around ωd

FIG. 3. Interplay between the DNR and Duffing mechanisms. (a) The drive power level-frequency contour (drive
frequency ¼ 3.862 MHz) indicating the DNR and DNR-Duffing regimes. (b), (c) The drive frequency-sense frequency contour (five
comb lines) in the DNR and DNR-Duffing regimes, respectively. (d) The comb spacing with frequency renormalization (ωd − fω0) vs the
comb spacing without frequency renormalization (ωd − ω0) indicating the DNR and Duffing regimes.
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corresponds to the weak excitation of the comb-mode-
specific vibration pattern [Fig. 4(b)].
While the behavior of comb generation in different

regimes is now understood, a brief discussion on the
frequency ranges corresponding to each regime is presented
here. As the comb generation thresholds at higher drive
levels are met for a wide range of frequencies, the
frequency range of the phononic comb regime expands
with the drive level, and, consequently, the frequency range
of the small signal regime diminishes. However, in our
experiments, the frequency range of the dispersion band
regime stays almost constant with the drive level. Despite
this, in practice, the dispersion bandwidth can be controlled
through several exquisite engineering approaches [20,21].
In summary, this Letter reports the first ever experimental

demonstration of a phononic frequency comb. Further, a
phenomenological model is specified to define the nature of
direct nonlinear resonances that govern frequency comb
generation. The presented concepts find general relevance to
other nonlinear systems in both quantum and classical
domains. In addition to the fundamental advance reported
here, phononic frequency combs also find applications to
accurate micro- and nano-mechanical resonant sensors

adapted for stable long-duration measurements [22,23],
engineering phase-coherent phonon lasers [24], phonon
computing [25,26], pulse trainmediated ultrasonic imaging,
and fundamental investigations of nonlinear phononics [27].
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