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We present a nucleus-dependent valence-space approach for calculating ground and excited states of
nuclei, which generalizes the shell-model in-medium similarity renormalization group to an ensemble
reference with fractionally filled orbitals. Because the ensemble is used only as a reference, and not to
represent physical states, no symmetry restoration is required. This allows us to capture three-nucleon (3N)
forces among valence nucleons with a valence-space Hamiltonian specifically targeted to each nucleus of
interest. Predicted ground-state energies from carbon through nickel agree with results of other large-space
ab initio methods, generally to the 1% level. In addition, we show that this new approach is required in
order to obtain convergence for nuclei in the upper p and sd shells. Finally, we address the 1þ=3þ inversion
problem in 22Na and 46V. This approach extends the reach of ab initio nuclear structure calculations to
essentially all light- and medium-mass nuclei.
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The development of a first-principles, or ab initio, theo-
retical description of atomic nuclei is a central challenge
in nuclear physics. This task is complicated by the combined
difficulties of not having an exact form for nuclear
interactions and the great complexity in solving the nuclear
many-body problem.Regardless, controlled predictionswith
uncertainty estimates are vital to guide efforts of rare-isotope
beam facilities [1,2], to constrain nucleosynthesis models
predicting the origin of heavy elements in theUniverse [3,4],
and to quantify nuclear structure effects in searches for
beyond-standard-model physics such as neutrinoless dou-
ble-beta decay [5], dark matter [6,7], and superallowed beta
decay [8]. Developments in chiral effective field theory
[9,10], similarity renormalization group (SRG) [11], and
ab initio many-body techniques [12–17] provide a unified
picture for these efforts, while three-nucleon (3N) forces
have emerged as an essential component of nuclear forces
[2,18–29]. In this Letter, we present a powerful many-body
development which significantly extends the range of
systems in which nuclear forces may be tested.
One promising approach to the many-body problem is

offered by the shell-model paradigm, where a valence-space
Hamiltonian of tractable dimension is decoupled from the
much larger Hilbert space and diagonalized. This allows the
treatment of excited states, deformation, and transitions in
open-shell systems within a single framework. Building
upon earlier perturbative approaches [30–32], ab initio
methods now provide shell-model Hamiltonians in a non-
perturbative manner [33–39], similar to recent work for
chemical systems, see, e.g., Ref. [40]. However, the inclu-
sion of residual 3N forces [41] among valence particles
[42,43] remains problematic in nonperturbative methods

and leads to a loss in accuracy compared to large-space
ab initio calculations [38].
A first attempt to address this shortcoming within the in-

medium similarity renormalization group (IM-SRG) frame-
work [38] used normal ordering with respect to closed
subshells in the valence space, but gave no clear prescrip-
tion for systems far from closed shells. In this Letter, we
generalize our approach to a reference with fractionally
occupied orbits, capturing the dominant effects of neglected
3N forces among valence nucleons. Since these effects
scale nontrivially with mass number A, the standard shell-
model approach of constructing one Hamiltonian for an
entire region [44,45] appears to be insufficient from an
ab initio standpoint. Therefore, we adopt a new strategy
and decouple a targeted valence-space Hamiltonian for
each nucleus with the IM-SRG, using a specialized
reference for the normal ordering. The resulting ground-
state energies agree well with large-space ab initio meth-
ods, generally to the 1% level. We highlight the improve-
ment for systems far from closed shells in 22Na and 46V,
where the 1þ1 =3

þ
1 level-inversion problem is addressed for

the first time in an ab initio framework.
A key feature of the IM-SRG is the use of operators that

are normal ordered with respect to a particular reference
state jΦ0i. The Hamiltonian, which in free space has one-,
two-, and three-body pieces, is rewritten exactly as [21]

H ¼ E0 þ
X
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where the braces indicate normal ordering with respect to
the reference for any string of creation or annihilation
operators such that hΦ0jfa†1…aNgjΦ0i ¼ 0. To make the
calculation tractable, the residual 3N interaction Wijklmn

is neglected, leading to the normal-ordered two-body
approximation [18,46,47]. Naively, the quality of this
approximation depends on how well jΦ0i approximates
the eigenstate of the full Hamiltonian.
In the original implementation of the IM-SRG

[15,48,49], jΦ0i was taken to be a single Slater determi-
nant, limiting its applicability to ground states of closed-
shell nuclei such as 16O. The multireference formulation
[21,26,50] extended the reach to general open-shell nuclei,
although current implementations are limited to ground
states of even-even nuclei. The shell-model variant
[34,35,38] of the IM-SRG uses the core of the valence
space as the reference—e.g., 16O for an sd valence space—
enabling the treatment of open-shell nuclei and excited
states.
Comparing the results of the above approaches provides

a test of the validity of their respective approximations. As
discussed in Refs. [35,38], the shell-model IM-SRG gives
good agreement for few valence particles, but as more are
added, the results become overbound relative to large-space
methods. This may be understood by considering that, for
the choice of interaction used in those studies, the initial 3N
forces combined with those induced by SRG and IM-SRG
transformations produce a net repulsion [51]. The bulk of
this repulsive 3N force is captured by the normal-ordered
two-body approximation. However, if the normal ordering
is performed with respect to the core, the repulsive 3N
interaction among valence nucleons is neglected, leading
to overbinding that grows with the number of valence
particles.
A first attempt to address this issue, illustrated sche-

matically in Fig. 1(a), is to normal order with respect to the
nearest closed shell (e.g., using a 22O reference to calculate
23F), while still decoupling the core [38]. At the end of the
decoupling, the interaction is re-normal ordered with
respect to the core for use in a standard shell-model code.

This final transformation, carried out at the two-body level,
is unitary and preserves the decoupling. This approach,
referred to as targeted normal ordering (TNO), largely
corrects the discrepancy between the shell-model results
and other large-space methods for the oxygen and fluorine
chains.
One caveat is that some doubly open-shell nuclei (e.g.,

22Na) are far from a closed shell. A physically intuitive next
step, illustrated in Fig. 1(b), would be to “interpolate”
between closed shells with a fractional occupation of the
last shell (e.g., a 0d5=2 occupation fraction of 0.5 for 22Na),
ideally without the additional computational effort asso-
ciated with the multireference formulation. As discussed in
Refs. [52,53], this so-called equal-filling approximation
formally amounts to employing an ensemble or mixed-state
reference defined by a density matrix ρ ¼ P

αcαjΦαihΦαj,
with normal ordering defined using a trace:
Trðρfa†1…aNgÞ ¼ 0 [54,55]. The coefficients cα are
chosen such that the desired occupations are achieved
(see the Supplemental Material for details [56]). Note that,
for our present purposes, we merely require the existence of
such an ensemble so that we are formally justified in using
fractional occupation numbers. For closed shells, this
ensemble normal ordering (ENO) reduces to the TNO
described above.
Such a reference is problematic for ground-state methods

(e.g., single- or multireference IM-SRG, coupled cluster,
Hartree-Fock-Bogoliubov) because they are designed to
decouple a pure eigenstate of the Hamiltonian. However, in
the valence-space approach, the reference merely provides
a convenient way to arrange operators (also see [60]). Even
if the ensemble is not an eigenstate of angular momentum
or particle number, the Hamiltonian conserves these quan-
tities throughout the calculation. While the ensemble does
not accurately represent any particular state in the targeted
system, it is reasonable (and results confirm) that having
the right number of particles in roughly the right configu-
ration is a sufficiently good approximation. Indeed, the
exact eigenstate of the full Hamiltonian is not necessarily
the optimal reference for making the normal-ordered two-
body approximation [40]. Reference [61] demonstrated that
little is gained by improving the reference beyond a low-
order approximation, and similar observations have been
made in nuclear matter [62].
Technical details of the calculation are presented as

Supplemental Material [56]. However, we summarize the
essential points here. As in Ref. [38], we use a chiral NN
interaction at N3LO [10,63], and a chiral 3N interaction at
N2LO [64], SRG evolved in a harmonic oscillator basis
[65]. We transform this interaction to the Hartree-Fock
basis of the ENO reference, at which point the normal-
ordered three-body part is discarded. The valence space is
decoupled from the full Hilbert space using the IM-SRG,
and finally, the resulting interaction is diagonalized with a
standard shell-model code [66]. For comparison, in a few

FIG. 1. Examples of (a) a reference which is different from the
core, here 22O, and (b) an ensemble reference with fractional
filling, here approximating 18O. Note that in both cases the
valence space is identical.
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cases, we also perform importance-truncated no-core shell
model (IT-NCSM) [17] calculations, fully including 3N
forces and extrapolating to an infinite model space.
As a first test of this new approach, we investigate

ground-state energies of medium-mass isotopic chains.
We note here that the development of chiral interactions
is still in progress and that all currently available
interactions, including the one used here, have known
systematic deficiencies [26,27,67]. Consequently, the
target for success is not experimental data, but other
many-body methods employing the same interaction, in
cases where those methods are reliable. It is useful to
benchmark in the oxygen isotopic chain, where published
results from several different many-body methods are
available, and no complications from deformation arise.
As illustrated in Fig. 2(c), the shell-model IM-SRG
approach, with a core reference state (dashed line), leads
to increasing error as valence particles are added. At
harmonic-oscillator shell closures, changing the core
leads to a large change in the ground-state energy.
ENO corrects this deficiency, yielding energies that agree
well with other methods throughout the chain. Similar
improvement is seen in the calcium and nickel isotopic
chains with a few notable discrepancies. An analogous
pattern was seen in deformed neon isotopes [38,50],
where the multireference IM-SRG appeared to decouple
an intrinsically spherical excited state. For the nickel

isotopes, we stop at 74Ni because the valence-space
diagonalization becomes expensive (though not unfea-
sible). Techniques such as importance truncation [70]
provide a clear path forward for such nuclei.
The valence-space approach is not restricted to the

vicinity of shell closures; to demonstrate this versatility,
we present the carbon, nitrogen, and sodium isotopic chains
in Figs. 2(a), 2(b), and 2(d), respectively. The resulting
ground-state energies agree well with those obtained by
other many-body methods [36,68,71,72], though the bind-
ing energy of 12C differs significantly from those obtained
with IT-NCSM and multireference IM-SRG. While some
discrepancy should be due to the normal-ordering approxi-
mation, we leave a more thorough investigation for future
work. No previous ab initio results exist for sodium
isotopes.
An important issue arising in the upper p shell,

illustrated in Fig. 3(a) for 16O, is that shell-model
IM-SRG calculations (using a 4He reference) do not
converge with emax, while ENO calculations do. Similar
behavior is observed for other upper-p-shell nuclei. The
most likely reason is that the Hartree-Fock single-particle
wave functions for the 4He and 16O reference states are
quite different. Since the former are not optimized for
16O, we expect that three- and higher-body operators
induced by the IM-SRG flow are necessary for a proper
description; their omission leads to the observed lack of

FIG. 2. Ground-state energies of (a) carbon (b) nitrogen, (c) oxygen, (d) sodium, (e) calcium, and (f) nickel isotopic chains, calculated
with multireference IM-SRG (MR-IM-SRG) [21,26], coupled cluster (CCSD(T)) [36], completely renormalized coupled cluster
(CRCC) [67], importance-truncated no-core shell model (IT-NCSM, see text), self-consistent Green’s function (SCGF), and Gor’kov
Green’s function (GGF) [68], compared to experiment [69]. The IM-SRG (SM) curves use a core reference, while the curves labeled
IM-SRG (ENO) use an ensemble reference. Dashed vertical lines indicate neutron harmonic-oscillator shell closures. Calcium isotopes
are calculated with emax ¼ 14, consistent with the MR-IM-SRG calculations.
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convergence. This effect likely arises in other methods
deriving shell-model interactions [33,37,39] and, as
shown in Fig. 3(b), is also present in the upper sd shell,
albeit more weakly.
Calculations of 16O and 40Ca provide a check on a major

source of uncertainty in the valence-space approach since
they consist of a single Slater determinant in the p and sd
shells, respectively. The valence-space results should be
identical to those of the single-reference IM-SRG, and any
discrepancy must be due to the additional valence-space
decoupling. If this decoupling were perfectly unitary, it
would not cause any error. Since in practice the IM-SRG
flow equations are truncated at the two-body level, unitarity
is spoiled and a small error (approximately 1%) arises due
to this extra decoupling step.
In Fig. 4, we show the ground-state energy per nucleon

for several closed p- and sd-shell nuclei. Clearly, the
ENO results agree well with the large-space results. The
circles above Fig. 4 indicate the overlap of the reference
determinant with the valence-space ground state. The
small overlap for 28Si indicates that the reference is a
poor approximation of the ground state and suggests that
the single-reference calculation selects an excited
0þ state.

Finally, 3N forces are important for spectroscopy. A
famous example is 10B, where 3N forces are necessary to
reproduce the ordering of ground state and first excited
state [73,74]. Figure 5(a) compares results obtained with
various references to IT-NCSM results, which include full
3N forces. The variation of the cutoff Λ3N demonstrates the
sensitivity of the level ordering to the details of the 3N
force. Reference [61] demonstrated that the normal-ordered
two-body approximation can capture the relevant physics if
an adequate reference is used. Our results show that the
ENO reference meets this requirement.
The analogous sd- and pf-shell systems are 22Na and

46V, respectively. Results for the 1þ1 =3
þ
1 energy splittings in

these nuclei are shown in Figs. 5(b) and 5(c) for two
choices of reference. As these nuclei are not within reach of
IT-NCSM or other large-space methods, we compare to
experiment, where we observe a similar effect to that in 10B.
For 46V, the sizable SRG-induced many-body forces for
the Λ3N ¼ 500 MeV interaction lead to unreliable results
[47], so we report only the Λ3N ¼ 400 MeV result. To our
knowledge, these are the first ab initio calculations to
reproduce the experimental 1þ1 =3

þ
1 ordering in these

systems.
In conclusion, we have generalized the IM-SRG frame-

work to ensemble reference states, allowing the approxi-
mate inclusion of residual 3N forces in the valence space.
Results agree with other large-space ab initio methods to
the 1% level, but now extend to ground and excited states
of essentially all light and medium-mass nuclei, including
deformed systems. In the case of the upper p and sd shells,
the ENO approach is required to obtain converged results.
For the specific cases of 10B, 22Na, and 46V, where residual
3N forces are essential to obtain the correct 1þ1 =3

þ
1 order-

ing, we have shown that our new approach captures the
relevant physics. The unique combination of precision,
versatility, and low computational cost establishes the
valence-space IM-SRG as a powerful ab initio tool for
addressing fundamental questions in nuclei.

FIG. 3. (a) Convergence of the 16O ground-state energy as a
function of emax. The curve labeled “single ref.” is obtained by
directly decoupling a single Slater determinant representing the
ground state. The other curves are obtained by decoupling the
valence 0p shell, using either a 4He or 16O Slater determinant as
the normal-ordering reference jΦ0i. (b) The analogous case for
40Ca in the sd shell.

FIG. 4. Ground-state energy per nucleon of closed sd-shell
nuclei, calculated with the shell-model IM-SRG using the core as
the reference SMðC ¼ RÞ, the ENO approach (here equivalent to
TNO), and single-reference IM-SRG. The black bars indicate
the experimental values [69], and the orange circles indicate the
overlap of the ENO ground-state wave function jΨi with the
reference determinant jΦ0i.

FIG. 5. (a) Energies of the lowest 1þ, 3þ states of 10B,
calculated with two different cutoffs for the 3N force,
Λ3N ¼ 400, 500 MeV, using both IM-SRG and IT-NCSM. The
shaded bands indicate the estimated uncertainty due to model
space extrapolations. For the IM-SRG calculations, results for
different references jΦ0i are given. The same is shown for
(b) 22Na and (c) 46V, comparing IM-SRG to experiment.
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