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We propose the on-shell superfield description for tree amplitudes of D = 11 supergravity and the
Britto-Cachazo-Feng-Witten—type recurrent relations for these superamplitudes.
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In recent years, we have witnessed great progress in
calculations of multiloop amplitudes (see, e.g., [1-4], and
references therein), an important part of which is related to
the applications and development of the Britto-Cachazo-
Feng-Witten (BCFW) approach [5]. This first allowed us to
obtain Britto-Cachazo-Feng (BCF) recursion relations for
tree amplitudes in D = 4 Yang-Mills and A = 4 super-
symmetric Yang-Mills (SYM) theory [6-8] and then was
developed for the case of superamplitudes of N' =4 SYM
theory [9,10], loop (super)amplitudes, and N = 8 super-
gravity [9—12] (see [11,12] for more references). To lighten
the text, below we will mainly omit “super” in super-
amplitudes, calling them amplitudes.

This approach was generalized for the tree amplitudes
of the D = 10 SYM model in Ref. [13] but then mainly
used in the context of type IIB supergravity [14—17], where
the presence of complex structure allowed us to lighten
the “Clifford superfield” description of the amplitudes in
Ref. [13]. The observation that the constrained bosonic
spinor helicity variables used in Ref. [13] can be identified
with spinor moving frame variables of Refs. [18-20] (or,
equivalently, with Lorentz harmonics of Refs. [21,22]) [23]
allowed us to simplify it('s A/ = 1 version) [26] and also to
generalize it to the case of D = 11 supergravity [27]. The
results of this 11D generalization of the on-shell superfield
description of tree amplitudes and of the BCFW recurrent
relations for these will be reported in this Letter.

The BCFW recursion relations [5] are written for
n-particle tree amplitudes .A(")(p(l),e(l); 3 D(n)» E(n)) 1N
spinor helicity formalism, in which the information on
the (lightlike) momentum p,; and on the helicity of the
i-th external particle are encoded in the bosonic spinor
/1’(“1.) = (/_1?1.))*. The lightlike momentum is defined by the

Cartan-Penrose representation (see [31] and references
therein)

Puliy i = 22a Ay € Puti) = Aoy (1)

where a’; 5 are relativistic Pauli matrices, A =1, 2 and

A= 1, 2 are Weyl spinor indices, and u =0, ..., 3.
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All n-particle amplitudes for the fields of the N =4
SYM theory can be described by a superfield amplitude
(superamplitude) [9,10] A" ( /_1(1),11(1);

(»)) depending, besides /IA and AA) on the set of n

) A

complex fermionic coordmates E’l) = (' g(iy)" (first
introduced in Ref. [32]), 11 ) = —nf );7 l) ﬁq<i);1‘<"].> =
r]( (i) carrying the 1ndex g=1,...,4 of the

fundamental representation of SU(4). These superfield
amplitudes are multiparticle counterparts of the so-called
on-shell superfield

- - 1 1 _
(I)(ﬂ,/l, ’74) :f(_> (l,/l) + nq)(q +§nq’1pqu +§77q77p71r€rpqs)(s
1
+a’7qnp7]rr]s€rpqsf(+) (2)

describing all the states of the linearized SYM provided it
obeys the so-called helicity constraint [31,32]

f@(/l, A, n)

) ) )
— A 7A
2hi= =it AT 4)

= ®(1.A.n), (3)

The n-particle on-shell superfield amplitudes of 4D N = 4
SYM theory, A(">(/1(1),/1(1),l1(1);---;ﬂ(n),/l(n)a’?(n))z
AW (. ;2. ni5...), should obey the set of n helicity
constraints

i’\l(l)A(n)(,/ll,Zl,ﬂl, ) = A(n)(,/ll,/_ll,l’]l, ), (5)
with 2h;) = = /044 + 3, 0/03% +nf 0/ o,

We refer to Refs. [9,10] for the superfield generalization
of the original D =4 BCFW recurrent relations [5] and
pass to the 11D generalization of the spinor helicity
formalism.

Spinor helicity formalism in D = 11.—Let us denote the
D =11 vector indices by a,b,c=0,1,...,9,10, spinor
indices of SO(1,10) by a,p.y, o 32 and D =11
Dirac matrices by I',,”. In our mostly minus notation,

n* = diag(+1,-1,...,—1), both ',/ and the charge
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conjugation matrix C% = —CP* are imaginary. We will
also use the real symmetric matrices I, = IdCpy= I
and I = cord =10,

The lightlike momentum of a massless 11D particle can
be expressed by relations similar to (1):

p#v;fav; = k,b,,. (6)

kalsy = 20" 07005,
in terms of “energy variable” p” and a set of 16 constrained
bosonic 32-component spinors vy, ¢, p = 1, ..., 16, which
can be identified with D =11 spinor moving frame
variables [33-35] or Lorentz harmonics [36]. Essentially,
the constraints on v, are given by Eq. (6) supplemented
by v, Cc vy, = 0 and by the requirement that the rank of
32 x 16 matrix v, is equal to 16. We refer to Refs. [34,35]
for the complete description and discussion of the con-
straints and gauge symmetries of the spinor moving frame
formalism for the 11D massless superparticle and only
notice that, taking all these into account, the variables vy,
can be considered as homogeneous coordinates on S°, the
celestial sphere of a D = 11 observer,

{vag} = . (7)
The sign superindices ~ and *="", carried by v, and p*,
characterize their scaling properties with respect to the
SO(1,1) gauge symmetry of the spinor moving frame (or
Lorentz harmonic) approach to a massless (super)particle.
One can check that, due to (6) and v, Cv, =0, the
momentum vector k, is lightlike, k,k* = 0, and moreover
the spinor moving frame variables v, obey the massless
Dirac equation (in momentum representation)

kD Pvg,~ = 06k, T, = 0. (8)

The 11D counterparts of the 10D spinor helicity vari-
ables of Ref. [13] are 4,, = \//? gy the counterpart of the
polarization spinor of the 10D fermionic field in D = 11 is
given by the same helicity spinor but with the risen spinor
index, 1% = \/p*v;* = —iC%2y, [= (22)"].

One notices_that Egs. (6) can be written as F(‘;ﬁka =
2aqpq gnd AqFal. » = ka0, However, the energy variable
p* and its canonically conjugate coordinate x~ play an
important role in our construction below. In particular, the
D = 11 counterparts of the on-shell superfields are defined
on superspace

> (10]16) - {(x=, v;q;eg)}, (9)

with bosonic sector R ® S° [see (7)] including R = {x~}.

D =11 on-shell superfields—The description of
linearized 11D supergravity multiplet by superfields in
the on-shell superspace (9) was proposed in Ref. [36]
(and can be reproduced when quantizing the massless 11D
superparticle [26]). It was given in terms of a
bosonic  antisymmetric  tensor  superfield @YK =
DKl (x=, 07, v,,”) which obeys

DfOVE =3y wkl, oyl Wl =0, (10)

Here I,J,K=1,....9, ¢.p=1,...,16, y{]p = yéq are
d = 9 Dirac matrices, 'y’ + ¥’y = 61,6516, and

. 0 0
is the fermionic covariant derivative obeying the d = 1,
N = 16 supersymmetry algebra {D},D}} = 4i6,,0_.
The consistency of Eq. (10) requires that fermionic
superfield W} satisfies, besides y;, ¥}, = 0,

1
— gt + 65/ gy )O_®IKE + 20_H v 4p,

Dyl = 8
(12)
with symmetric traceless SO(9) tensor superfield H;; =
H ) (below, to simplify notation, we will write ()
instead of ((;;)) indices), obeying
(I
D/H; = WEzp‘I’p)a

H;; = Hy, H; =0. (13)

The leading component of this bosonic superfield,

hyy(x=,vgy) = Hyjlg-—o. describes the on-shell degrees

of freedom of the 11D graviton (see [36] for more details).
One can collect all the above on-shell superfields in

\IIQ(x:a U(;q;gq_> = {qllzp @[IJK]’H(IJ)}’ (14)

with multi-index Q taking 128 (= 144 — 16) “fermionic”
and 128=84+44 “bosonic values,” Q={1q,[IJK]|,(1])}.
The set of equations (12), (10), and (13) can be unified
in

DZ;\IJQ = AQqP\IIP’ (15)

where the operator Ay, p can be easily read off Egs. (12),
(10), and (13). It contains differential operator J_ when
Q = Iq and is purely algebraic otherwise. This difference is
diminished when passing to the Fourier images of the super-
fields with respect to the x= coordinate, Wy (p*,v5,:0;) =
(1/2x) [dx~exp(ip*x=) Wy (x~,v5,:0;). These obey the
same equation (15) but with _r — ip* and

D; = 9} +2p"6;. (16)

As we have already noticed, the set of Egs. (12), (10),
and (13), collected in (15), are dependent. We can choose
any of them and reproduce two others from its consistency
conditions. Passing to the Fourier image makes it natural to
choose the fermionic superfield as fundamental and to
describe the linearized 11D supergravity by the equation

i o
p .
D;\I/; = ——(yIJKL + 651[17/“])4,,(1)”“‘ - 21p#HHyép.

18
(17)

Equations (15) [i.e., the set of Egs. (10), (12), and (13)]
and y! @) = 0 play the role of D = 4 helicity constraint
(3). Then it is natural to expect that an on-shell tree
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superfield amplitude should satisfy essentially the same set
of equations for each of the scattered particles.

Tree on-shell amplitudes in D = 11.—The tree on-shell
n-particle scattering amplitudes can be described as a
function in a direct product of n copies of the on-shell
superspace (9)”

Ag])an(kl,Hl‘;...;

k,.07) A(n)Q/(

— A R
:A..‘le(""p(l)’vq(l)’eq(l)"")’

kl’el_’)

carrying n multi-indices Q; = {I,q;, [I[,J,K;], (I;J;)} [see
(14)]. As indicated in (18), for shortness we often write the
bosonic argument of the amplitude as k?l) instead of
p’(*l); v [implying that k?l) is expressed in terms of these
by (6), where p’(’l) is allowed to be negative]. We will also
omit the arguments of the amplitude when this does not
produce confusion.

The set of equations for the 11D amplitudes, playing the
role of D = 4 helicity constraints (5), includes, besides the
y-tracelessness on every fermionic multi-index /;¢,,

1
YPZIQZA‘..I([)q(I)“. = 0’ (19)

the equation
D;L(DA_..Q(,)... = (_)ZIAQH]P(,)A...P(,)A..’ (20)

where Agp ,p is the same as in (15) [i.e., can be read off
(17), (10), and (13)], but acting on variables and indices
corresponding to the /th particle, and ¥; can be defined as

Fhe number of fermionic, /;q;, indices among Q, ...Q;_1),
ie.,
=L (1= (—)E@)) ([IJJ]KJ]) 0=¢(I;J;),
L=)
(21)

In particular, when Q; = I,p;, Eq. (20) reads

+(1) 4(n) (1)
(=)D, Ap) 1pr...0, = ~2iP}y V100 AL, 110,

Loy ( 1J,K/L,

- ﬁp(z) qp
KL n
+65"Viygy ]])A<Q1)...[J,K,Ll]...Q,,'

(22)

Generalized BCFW deformation in D = 11.—To write
the generalized BCFW recurrent relations in D = 11, we
have to define the generalized BCFW deformation of
bosonic and fermionic variables of the above described
11D on-shell superfield formalism.

As in the original 4D construction [5], the deformation
of, say, the first and the nth particle variables should imply
the opposite shift of their lightlike momenta:

~

Gy =kiy =2t Ky =Ky (29)
on a lightlike vector ¢“ orthogonal to both k?l) and k‘(ln):

909" =0, qokl;y =0, q.k{,) =0, (24)
multiplied by an arbitrary complex number z € C [5] (the
10D construction of Ref. [13] used real z e R).
Equations (24) guarantee that the deformed momenta

remain lightlike:
(k(1))? = 0= (k(n)? = (k1)) =0 = (ki) (25)

Thus, the amplitude depending on these, instead of original
k(;) and k?n)’.Ale..,Q,,(k(l)v9(_1)§ ...k(,,),é(‘n)), remains an
on-shell amplitude.

In D = 4, the deformation of the momenta (25) results
from the following deformation of the bosonic spinors
entering the Penrose representation (1):

o~

A _ A A TA _7A _ 34
Koy = Ao T2 Ay = AL~y (20)

In D = 11, (25) results from the following deformation of
the associated spinor moving frame variables:

~

Vagn) = Vagn) T VapyMpar/Pl0 /Pl (27)

WPt (28)

which enter the Penrose-like constraints (6),

Vag() = V(1) — M50,

a — # - -
ki) Taop = 2P(3) Vag(s) Upg(iy

kadap = Pliy VgL api; (29)

The energy variables p*(’l.) are not deformed. The matrix M,
is constructed from the lightlike vector ¢* of (25):

v_(l)ra 'U;(n))\/ pﬁl)p?n)/(k(l)k(n)) (30)

(cf with 10D relations in Ref. [13]), with 16kz’ =
p<) <>F" - [see (29)], and is nilpotent:

qu = _qa<

M,prw,q =0, M, M, =0, (31)

due to (24). This nilpotent matrix enters also the deforma-
tion rules of the fermionic coordinates:

- - — # #
Opin) = Opn) T 20y Mapr/P(1 /Py (32)

~ - #
0y = gy = MO\ /Pl /Pl (33)
These can be also written as
o —zD*] Mb“n —z07 MD’H _
ep(i) — e T m T m >0p(1_>, (34)
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where the covariant fermionic derivatives D+( ; are defined
in (16). Their deformation

D+ — e_ZD(l)MG(n)_ZG(I)MD(n)D+

zD (M8, +z0 1 \MD
X NaadV) (n) (1) (n)
400 (i) (35)

is similar to the deformation of 8d Clifford algebra valued
variables in the 10D construction of Ref. [13].

Generalized BCFW recurrent relations for tree ampli-
tudes in D = 11.—The deformed tree amplitude is defined
as an amplitude depending on deformed momenta and
fermionic coordinates. We denote it by

(n) — ) A . 2
A = AT 0,000, (K(1)s s Ky 050 0
_ 4 gt S A ral
=A 0,0, (k(1>’9(1)’ k@), ""e(n—l)’k n) H(n))’
(36)
|
n R D
AWy 07 s 07y Ky 07) = )
01...0, (1) ) (n) 2;64[,0#(@)]
I < A (n=141)
X(Pl)z D+‘I(Zt)"4z:Jsz+1an[ P[(Z,) 6" k1+1’ (1+1)5 -
Here
I
=-) K. (41)
m=1
l A
== Ki(z) = Pf -z, (42)
m=1
g = P?Pla/(zp?‘h;)v (43)

with ¢* obeying (24) and (30) [37]. Equation (42) implies
that [P,(z)]> = (P;)? = 2zP, - ¢, so that P¢(z;) is lightlike:

[Pi(z)]> =0, 2= (P)*/(2P; - q).

As a result, first, both amplitudes in the rhs of (40) are on
the mass shell, and, second, we can express Ifj‘(z) in terms
of associated spinor moving frame variables vg,(z;) =

(44)

Vagp,(z, and energy +p*(z;) [see (6)]:

P (2)Taap = 29" (21)vag (21) 05, (21),
pz“(zl)5qp = f’#(Zz)”q_(Zz)faU; (21)-

This p*(z;) enters the denominator of the terms in rhs of
(40) (which is needed to simplify the relation between the
amplitude and superamplitude).

Actually, the bosonic arguments of the on-shell ampli-
tudes are energies p and v i) related to lightlike momenta
k(;y by (29) and the above Vag(27) and £p%(z); just for

(45)

(I+1) ) .
q(z1) {AZIQl Q]Jp[kl ’ 9(1), kz, 0

kn—l’ 9(_,,_1); kAn’ 96,)]”@’:0'

where in the last line it is assumed that the deformed
momenta correspond to the first and nth of the scattered
particles [so that k = k). 0, for I =2,. L(n=1)]
and the subscript z 1ndlcates the parameter used in this
deformation (27)—(33). Notice that deformed amplitudes

(36) satisfy, besides the gamma-tracelessness (19),
Egs. (20) with deformed derivatives (35):
D;_(])AZQI...Q(I)... = <_)ZIAQ[qP(1)AZ.Q1...P([) (37)
In particular,
(_)EID;:(I)A@-[IIJth]m = 31.7/[111(1\5111’1"41'-V/]Iizm’ (38)
(_)Z[D;:(I)AZM(I/]/)W = iy‘]/!’/(ll\AZm\Jl)Pl (39)

The proposed BCFW-type recurrent relation for tree super-
field amplitudes of 11D supergravity reads

(40)

shortness in (40), following (18), we hide this, writing
instead the dependence on the momenta.
Finally, D;F(Z[) in (40) is the covariant derivative with

respect to © constructed with the use of p*(z;) of (45):

D, —i+2

q(z;) 89— ( )®‘;

(46)
Notice that the structure of the rhs of (40),

D;(A‘..JpDJrqAJp...”G)':O

= D;(A...JngAJp... - (_)ZID;]FA...JpAJp...NO’ (47)

can be treated as an integration over the fermionic variable
©, in (47) with an exotic measure similar to one used in
Refs. [38,39] to construct a world sheet superfield formu-
lation of the heterotic string (see [40] for a formal
discussion on superspace measures).

To argue that there is no contribution to the rhs of (40) of
a pole at |z|—>o0, we can use the line of arguments
presented in Ref. [13] for the 10D case, which refers on
the case when external momenta lay in some 4d subspace of
spacetime and on the original proof of Ref. [5], which was
extended to N = 8 supergravity in Refs. [9-11].

The calculation of sample tree superamplitudes of 11D
supergravity with the use of the above BCFW-type recur-
rent relations (45) and generalization of these to loop
amplitudes will be the subject of subsequent work. See
Supplemental Material [41] for some technicalities needed
to proceed with explicit superamplitude calculations.
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