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First passage under restart has recently emerged as a conceptual framework suitable for the description
of a wide range of phenomena, but the endless variety of ways in which restart mechanisms and first
passage processes mix and match hindered the identification of unifying principles and general truths.
Hope that these exist came from a recently discovered universality displayed by processes under optimal,
constant rate, restart—but extensions and generalizations proved challenging as they marry arbitrarily
complex processes and restart mechanisms. To address this challenge, we develop a generic approach
to first passage under restart. Key features of diffusion under restart—the ultimate poster boy for this wide
and diverse class of problems—are then shown to be completely universal.
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A myriad of basic questions and a wide array of appli-
cations have turned first passage time (FPT) processes into a
long-standing focal point of scientific interest [1,2]. These
processes were studied extensively, e.g., in the context of
nonequilibrium systems [3], but despite many years of study,
paramount discoveries are still being made and exciting
applications continue to be found. Recently, several groups
have observed that any FPT process imaginable can become
subject to restart, i.e., can be stopped and started anew
(Fig. 1). This observation has opened a rapidly moving
theoretical research front [4–19], and applications to search
problems [20–22], the optimization of randomized computer
algorithms [23–29], and in the field of biophysics [30,31],
have further propelled its expansion. Universality has always
been considered a holy grail of the physical sciences, and
novel revelations concerning universality in FPT processes
have recently taken center stage and attracted considerable
attention [32–34]. In contrast, not a lot is known in general
about the problem of first passage under restart (FPUR).
Diffusion with resetting to the origin is a quintessential

example of FPUR [5]. In this problem, a particle undergoes
diffusion but from time to time is also taken and returned
to the place from where it started its motion (reset or restart).
In addition, at some distance away from the origin a target
awaits and one is interested in the time it takes the particle to
first get to the target, i.e., in its distribution and corresponding
moments. This problem was first studied with restart rates
that are constant in time and the surprise came from the fact
that restart was able to expedite search and that a carefully
chosen (optimal) restart rate couldminimize themean FPT to
the target. Further down the road, other restart mechanisms
were also studied [12,13,16,19] and it was shown that these
may underperform or overpreform when compared to restart
at a constant rate [12,19].
Each variant above carried with it some unique and

intriguing features, but exhausting the vast combinatorial

space of process-restart pairs—one problem at a time—is
virtually impossible. Indeed, restart processes may take
different shapes and forms and the effect they have on
FPT processes other than diffusion [35–42] is also of interest.
Moreover, it is often the case—in real life scenarios—that
the process under consideration, the restart mechanism that
accompanies it, or both are poorly specified or even

FIG. 1. (Top) Bad weather could force a team of searchers to
temporarily cease their efforts and return to base. By the time
search is renewed the target may have relocated and search must
thus start from scratch. (Middle) A computer algorithm operates
as a black box which randomly scans a tree of possibilities in
search of a solution. Chance may send the algorithm down the
wrong path, but programmed restart could help rescue the search.
(Bottom) A molecule that was previously prepared at an excited
state decays to a low energy state. A pulse of laser could bring
the molecule back to its excited state and restart a chemical or
physical reaction. This time, the desired product may be formed.
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completely unknown.Moregeneral approaches, better suited
to deal with partial and missing information and with
the need to generalize from specific examples, could then
become handy.
Recently, two attempts to unify treatment were made.

In Ref. [18], an approach suitable to the description of a
generic FPT process under constant rate restart was pre-
sented. The approachwas utilized to show thatwhen restart is
optimal, the relative fluctuation in the FPT of the restarted
process is always unity. This result holds true regardless of
the underlying process, be it diffusion or something else, but
is no longer valid for time-dependent restart rates as these
were not covered by the approach to begin with. Restart rates
with arbitrary time dependencewere considered in Ref. [12],
but analysis there was limited to diffusion and did not cover
other FPT processes. Here, we will be interested in merging
the two approaches in an attempt to get the best of both
worlds. To this end, we consider a generic FPT process that
has further become subject to a generic restart mechanism.
This setting is extremely general and captures, as special
cases, the overwhelming majority of models that have
already appeared in the literature. We analyze this scheme
to attain, and concisely describe, several broad scope results
that unravel universal features of this wide class of problems.
Inwhat follows,we usefZðtÞ, hZi, σ2ðZÞ, and ~ZðsÞ≡ he−sZi
to denote, respectively, the probability density function,
expectation, variance, andLaplace transform of a real-valued
random variable Z.
MeanFPTunder restart.—Consider a generic process that

starts at time zero and, if allowed to take place without
interruptions, ends after a random time T. The process is,
however, restarted at some random time R. Thus, if the
process is completed prior to restart, the story there ends.
Otherwise, the process will start from scratch and begin
completely anew. This procedure repeats itself until the
process reaches completion. Denoting the random comple-
tion time of the restarted process by TR, it can be seen that

TR ¼
�
T if T < R

Rþ T 0
R if R ≤ T;

ð1Þ

where T 0
R is an independent and identically distributed copy

of TR.
A scheme similar to the one described in Eq. (1) was

analyzed in Ref. [18]. There, no assumptions were made on
the distribution of the time T which governs the completion
of the underlying process, but the restart time R was assu-
med to be exponentially distributed with rate parameter r.
This means that restart is conducted at a constant rate r,
i.e., that for any given time point the probability that restart
will occur at the next infinitesimal time interval dt is rdt.
Here, we relax this assumption allowing for generally
distributed restart times or, equivalently, for restart rates
with arbitrary time dependence. Letting rðtÞ denote the
restart rate at time t, we note that the two perspectives are
related via (Fig. 2)

PrðR ≤ tÞ ¼ 1 − exp
�
−
Z

t

0

rðxÞdx
�
; ð2Þ

where PrðR ≤ tÞ is the probability that R ≤ t [43].
Equation (1) could be used to provide a simple

formula for the mean FPT of a stochastic process
under restart. Indeed, noting that it can also be written
as TR ¼ minðT; RÞ þ IfR ≤ TgT 0

R, where minðT; RÞ is the
minimum of T and R and IfR ≤ Tg is an indicator random
variable that takes the value 1 when R ≤ T and zero
otherwise, we take expectations to find

hTRi ¼
hminðT; RÞi
PrðT < RÞ : ð3Þ

The right-hand side of Eq. (3) can then be computed given
the distributions of T and R if one also recalls that the
cumulative distribution function of minðT; RÞ is given by
PrðminðT; RÞ ≤ tÞ ¼ 1 − PrðT > tÞ PrðR > tÞ.
A hallmark of restart is its ability to minimize (optimize)

mean FPTs. For example, when the restart rate rðtÞ ¼ r is
constant, it is straightforward to show that Eq. (3) reduces
to hTRi ¼ ½1 − ~TðrÞ�=½r ~TðrÞ�, where ~TðrÞ is the Laplace
transform of T evaluated at r. One could then seek an
optimal rate r�, which brings hTRi to a minimum, derive
general conditions for this rate to be strictly larger than
zero, and further discuss universal properties of the optimal
rate itself [15,30]. Clearly, this line of inquiry is not limited
to the case of exponentially distributed restart times and
could also be extended to other parametric distributions.
Various optimization questions could then be addressed
directly, but we would now like to consider a broader
optimization question. Specifically, we ask if within the
vast space of stochastic restart strategies, and irrespective of
the underlying process being restarted, there is a single
winning strategy that could not be beat.
Sharp restart is a dominant strategy.—Consider a particle

“searching” for a stationary target via one-dimensional

FIG. 2. A few examples of restart time distributions (left) and
the restart rates they induce (right). Below δðxÞ is the Dirac delta
function, ΓðxÞ is the Gamma function, and hRi ¼ 1 in all plots.
(i) Sharp (deterministic) restart fRðtÞ ¼ δðt − hRiÞ. Restart rate
jumps abruptly from zero to infinity at t ¼ hRi. (ii) Exponentially
distributed restart fRðtÞ ¼ hRi−1e−t=hRi. Restart rate is constant:
rðtÞ ¼ 1=hRi, (iii) and (iv) Weibull distributed restart fRðtÞ ¼
k=λðt=λÞk−1e−ðt=λÞk . Restart rate is given by rðtÞ ¼ ktk−1=λk

and could monotonically decrease (e.g., k ¼ 1=2, λ ¼ hRi=2)
or increase [e.g., k ¼ 3=2, λ ¼ hRi=Γð5=3Þ] with time.
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diffusion. The particle starts at the origin, the initial distance
between the particle and the target is L, and the diffusion
coefficient of the particle is D. Denoting the particle’s FPT
to the target with T, the latter is known to come from the
Lévy-Smirnov distribution fTðtÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2=4Dπt3

p
e−L

2=4Dt [1].
Considering the same problem under restart, we take
D ¼ 1=2 and L ¼ 1, and utilize Eq. (3) to plot hTRi as a
function of hRi for various restart time distributions (Fig. 3).
As can be seen, a minimum of hTRi is always attained, and
while the values taken by the different minima and their
positions clearly depend on the distribution of the restart
time, it is sharp restart that attains the lowest of minima.
A similar observation was made in the past, and it was
consequently conjectured that in the case of diffusion
mediated search sharp restart is the optimal restart strategy
[12,19]. Strikingly, this is also true in general.
Consider, for the sake of simplicity, a random restart

time R characterized by a proper density fRðtÞ and
note that hminðT; RÞi ¼ R

∞
0 fRðtÞhminðT; RÞjR ¼ tidt ¼R∞

0 fRðtÞhminðT; tÞidt, which then implies

hTRi ¼
Z

∞

0

fRðtÞ PrðT < tÞ
PrðT < RÞ

hminðT; tÞi
PrðT < tÞ dt.

However,
R∞
0 ½fRðtÞ PrðT < tÞdt�=½PrðT < RÞ� ¼ 1, and

hminðT; tÞi=PrðT < tÞ is simply the mean completion time
of a process that is restarted sharply after t units of time. Thus,
if there exists some t� such that hminðT; t�Þi=PrðT < t�Þ ≤
hminðT; tÞi=PrðT < tÞ for all t ≥ 0, sharp restart at t� will
also beat any random restart time that is governed by a proper
density. Moreover, the law of total expectation implies
hminðT; RÞi ¼ hhminðT; RÞjRiTiR and steps similar to those
taken aboveassert that [seeSupplementalMaterial (SM) [44]]

hminðT; t�Þi
PrðT < t�Þ ≤

hminðT; RÞi
PrðT < RÞ ; ð4Þ

for any random restart time R regardless of its distribution.
Equation (4) thusasserts that sharp restart isoptimal amongall
possible stochastic restart strategies in continuous time, and

we refer the reader to Luby et al. for a complementary,
algorithm oriented, discussion on the discrete time case [23].
Distribution of FPT under restart.—So far, we have only

been concerned with the mean FPT of a restarted process,
but we will now move on to discuss the full distribution
of TR. The scheme described in Eq. (1) suggests a direct
approach for numerical simulation of FPUR (Fig. 4, left).
In this approach, one draws two random times from the
distributions of T and R, and only then—based on the
outcome of that draw—decides which of the two, restart or
completion, happened first. An equivalent approach would
operate in reversed order. A coin with probability PrðT < RÞ
will first be tossed to determine if completion preceded
restart (or vice versa) and only then, given that information,
the appropriate—conditional—random time will be drawn
(Fig. 4, right). This approach is somewhat awkward and
indirect for the purpose of numerical simulations, but is
actually quite natural when coming to compute expectations
and Laplace transforms where one usually starts by con-
ditioning on the occurrence of an event of interest. Indeed,
analytical formulas could be simplified with the aid of two
auxiliary random variables:Rmin ≡ fRjR ¼ minðR; TÞg and
Tmin ≡ fTjT ¼ minðR; TÞg. In words, Rmin is the random
restart time given that restart occurred prior to completion,
and Tmin is defined in a similar manner. Conditioning on
whether T < R and applying the law of total expectation to
~TRðsÞ ¼ he−sTRi, we obtain (see SM [44])

~TRðsÞ ¼
PrðT < RÞ ~TminðsÞ

1 − PrðR ≤ TÞ ~RminðsÞ
: ð5Þ

Equation (5) allows one to explicitly compute the
distribution of TR in Laplace space. For example,
when T and R are correspondingly governed by prob-
ability densities fTðtÞ and fRðtÞ, we have PrðT < RÞ ¼R∞
0 fTðtÞ½

R∞
t fRðt0Þdt0�dt and the probability densities gov-

erning Tmin and Rmin are similarly given by

fTmin
ðtÞ ¼ fTðtÞ

Z
∞

t
fRðt0Þdt0=PrðT < RÞ;

fRmin
ðtÞ ¼ fRðtÞ

Z
∞

t
fTðt0Þdt0=PrðR ≤ TÞ: ð6Þ

FIG. 3. Mean FPT for diffusion mediated search with restart
versus the mean restart time, for various restart time distributions
taken from Fig. 2.

FIG. 4. Two approaches to first passage under restart.
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Plugging in concrete probability distributions, explicit
formulas can be obtained, e.g., for exponentially distributed
restart fRðtÞ ¼ re−rt, and one could readily show that
~TRðsÞ ¼ ~Tðsþ rÞ=½s=ðsþ rÞ þ (r=ðsþ rÞ) ~Tðsþ rÞ� (see
SM [44]), as was previously obtained in Ref. [18] by other
means.
Fluctuations in FPT under optimal sharp restart obey a

universal inequality.—Given Eq. (5), one could utilize
the known relation between moments and the Laplace
transform [41] to find (see SM [44])

hT2
R i ¼

hminðT; RÞ2i
PrðT < RÞ þ 2PrðR ≤ TÞhRminihminðT; RÞi

PrðT < RÞ2 :

ð7Þ

A special case of this result was used to show that the
relative fluctuation σðTRÞ=hTRi is always unity when a
process is restarted at a constant rate r� > 0, which brings
hTRi to a minimum. Optimal sharp restart could lower the
mean FPT hTRi well below the value it attains for optimal
constant rate restart, but unless the resulting fold reduction
is also matched or exceeded by a fold reduction in σðTRÞ,
the relative fluctuation in the FPTwould surely increase. It
is thus possible that the ability of the sharp restart strategy
to attain lower mean FPTs comes at the expense of higher
relative fluctuations—and, hence, greater uncertainty—in
the FPT itself. However, when Eq. (7) was utilized to
examine diffusion and other case studies (Fig. 5), we
consistently found

σðTt� Þ=hTt� i ≤ 1; ð8Þ

for the relative fluctuation at the optimal restart time t�.
Equation (8) is universal. To see this, we assume by

contradiction that there exists a FPT process for which
σðTt� Þ=hTt� i > 1, and consider a restart strategy Rmix in
which this process is restarted at a low constant rate r ≪ 1
in addition to being sharply restarted whenever a time t�
passes from the previous restart (or start) epoch. Applying
this restart strategy is equivalent to augmenting the
process under sharp restart with an additional restart
mechanism that restarts it with rate r. However, if the
relative fluctuation in the FPT of a process is larger than
unity, restart at a low constant rate will surely lower its
mean FPT (and vice versa). This is true regardless of the
underlying process, and can be seen by examining hTRi
for general T, and R which is exponentially distributed
with rate r [see formula for hTRi below Eq. (3)]. Utilizing
the moment representation of the Laplace transform,
one can then show that ½dhTRi=dr�jr¼0 < 0 whenever
σðTÞ=hTi>1 (see SM [44]). Denoting the mean FPT
under Rmix by hTRmix

i, and letting Tt� take T’s place above,
it follows that hTt� i > hTRmix

i. We have thus found a
nonsharp restart strategy that lowers the mean FPT

beyond that attained for optimal sharp restart. However,
this finding must be false as it stands in contradiction to
the proven dominance of optimal sharp restart (discussion
above), and Eq. (8) then follows immediately. More
generally, an equation similar to Eq. (8) must hold
for every restart strategy R which attains a FPT that
cannot be lowered further by introducing an additional
restart rate r ≪ 1, and Eqs. (3) and (7) could then
be utilized to comprehensively characterize this set of
strategies (see SM [44]):

σðTRÞ=hTRi ≤ 1⇔hTmini ≥
1

2

hminðT; RÞ2i
hminðT; RÞi : ð9Þ

A probabilistic interpretation of this result and discussion
with examples are given in the SM [44].
Conclusions and outlook.—In this Letter we developed

a theoretical framework for first passage under restart.
With its aid, we showed how simple observations made
for diffusion under restart can be elevated to the level of
generic statements which capture fundamental aspects of
the phenomena. The universal dominance of sharp restart
over other restart strategies is noteworthy. However, while
this strategy can be readily applied in some settings, its
realization in others may require going to extremes.
Particularly, in biophysical settings the generation of tight
time distributions relies on the concatenation of irrevers-
ible molecular transitions. Restart plays a role in such
systems [30,31], but the energetic cost associated with
creating an (almost) irreversible transition, and the infi-
nitely many required for mathematically sharp restart,
would surely give rise to interesting trade-offs. The
incorporation of such thermodynamic considerations into
the framework presented herein in the manner of
Refs. [46,47], and the identification of those nearly
optimal strategies (nonsharp but punctual) [48], which
perform best under energy consumption constraints, is yet
a future challenge.

FIG. 5. The mean (solid lines) and standard deviation (dashed
lines) of the restarted FPT Tt versus the sharp restart time t, for
various distributions of the underlying FPT T (see SM for
details [44]).
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