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We study the off-equilibrium behavior of systems with short-range interactions, slowly driven across
a thermal first-order transition, where the equilibrium dynamics is exponentially slow. We consider a
dynamics that starts in the high-T phase at time t ¼ ti < 0 and ends at t ¼ tf > 0 in the low-T phase, with a
time-dependent temperature TðtÞ=Tc ≈ 1 − t=ts, where ts is the protocol time scale. A general off-
equilibrium scaling (OS) behavior emerges in the limit of large ts. We check it at the first-order transition of
the two-dimensional q-state Potts model with q ¼ 20 and 10. The numerical results show evidence of a
dynamic transition, where the OS functions show a spinodal-like singularity. Therefore, the general mean-
field picture valid for systems with long-range interactions is qualitatively recovered, provided the time
dependence is appropriately (logarithmically) rescaled.
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The dynamical behavior of statistical systems driven
across phase transitions is a typical off-equilibrium phe-
nomenon. Indeed, the large-scale modes present at the
transition are unable to reach equilibrium as the system
changes phase, even when the time scale ts of the variation
of the system parameters is very large. Such phenomena are
of great interest in many different physical contexts [1–31]:
One observes hysteresis and coarsening phenomena, the
Kibble-Zurek defect production, etc. At continuous
transitions, thermodynamic quantities obey general off-
equilibrium scaling laws as a function of ts, controlled by
the universal static and dynamic exponents of the equilib-
rium transition [32,33]. Similar results hold along the
magnetic first-order transition line of systems with con-
tinuous OðNÞ symmetries (N > 1) [34].
This Letter considers systems with short-range inter-

actions undergoing a thermal first-order transition (FOT)
driven by the temperature T. At the FOT temperature Tc,
the energy density is discontinuous and any local dynamics
is very slow, due to an exponentially large tunneling time
between the two phases: τðLÞ ∼ expðσLd−1Þ for a system of
size Ld, where the constant σ is related to the interface free
energy. We study the off-equilibrium behavior arising when
T is slowly varied across Tc ≡ β−1c . We consider a linear
time dependence

δðtÞ≡ βðtÞ=βc − 1 ¼ t=ts; β≡ 1=T; ð1Þ

starting the dynamics at a time ti < 0 in the high-T phase
and ending it at tf > 0 in the low-T phase. ts is the time
scale of the temperature variation. This protocol is general,
since a generic time dependence can be approximated by a
linear function around Tc.

In the mean-field approximation, which becomes exact
for long-range interactions [3], after crossing Tc the system
persists in a metastable state with an infinite mean lifetime,
up to a spinodal-like point Tsp < Tc and, thus, up to a time
t > 0 such that δðtÞ ¼ Tc=Tsp − 1, where a rapid transition
to the low-T phase occurs. This picture requires a sub-
stantial revision in the case of short-range interactions,
because metastable states may decay when TðtÞ < Tc, due
to droplet formation [3].
We show that short-ranged systems at a thermal FOT

show an off-equilibrium scaling (OS) behavior, which
significantly differs from that obtained in the mean-field
approximation. For finite ts we observe a sharp transition to
the low-temperature phase at a temperature TðtsÞ < Tc, but
the temperature TðtsÞ approaches (logarithmically) Tc as ts
becomes large. Moreover, the time dependence of the OS
functions develops a singular behavior characterized by
peculiar scaling properties.
To test the general OS ideas, we consider the 2D Potts

model, which is an ideal theoretical laboratory to study
thermal FOTs. Its Hamiltonian reads

H ¼ −
X
hxyi

δðsx; syÞ; ð2Þ

where the sum is over the nearest-neighbor sites of a
square lattice, sx (color) are integer variables 1 ≤ sx ≤ q,
δða; bÞ ¼ 1 if a ¼ b and zero otherwise. It undergoes a
phase transition [35,36] at βc ¼ lnð1þ ffiffiffi

q
p Þ, between a

disordered phase and an ordered phase with q equivalent
vacua. The transition is of the first order for q > 4. We
consider L × L square lattices with periodic boundary
conditions (PBCs), which preserve the q-permutation
symmetry. In an infinite volume, the energy density
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E ¼ hHi=L2 is discontinuous at Tc, with different [37]
E�
c ≡ EðT�

c Þ. We define the renormalized energy density

Er ≡ Δ−1
e ðE − E−

c Þ; Δe ≡ Eþ
c − E−

c ; ð3Þ

which satisfies Er ¼ 0, 1 for T → T−
c and T → Tþ

c ,
respectively. The magnetization

Mk ¼
1

L2

�X
x

μkðxÞ
�
; μkðxÞ≡ qδðsx; kÞ − 1

q − 1
; ð4Þ

vanishes due to the q-state permutation symmetry, for any
T. We consider the correlation function Gkpðx; yÞ≡
hμkðxÞμpðyÞi and, in particular, its space integral

IG ¼ L−2
Xq
k¼1

X
x;y

Gkkðx; yÞ: ð5Þ

Equilibrium finite-size scaling (EFSS) holds also at FOTs
[38–44]. For cubiclike lattices, the relevant scaling variable
is r1 ¼ Ldδ, where δ≡ β=βc − 1. The energy density and
IG scale correspondingly as

ErðT; LÞ ≈ Eeqðr1Þ; IGðT; LÞ ≈ LdCeqðr1Þ; ð6Þ

in the EFSS limit L → ∞ keeping r1 fixed [45].
The system is driven across the transition by the temper-

ature protocol (1), starting from equilibrated configurations
at β ¼ βi ¼ βðtiÞ < βc. Observables, such as Er and IG, are
averaged at fixed t over the starting configurations. We
anticipate that the OS behavior across the FOT does not
depend on the value of βi < βc.
To specify the OS laws that describe the dynamic

behavior for βðtÞ ≈ βc, we must identify the correct scaling
variables. First, we use the variable r1, parametrizing the
EFSS functions, as equilibrium should be recovered in the
appropriate limit. To define a second scaling variable, we
should identify the appropriate time scale. When the global
symmetry is preserved by the boundary conditions or in the
absence of boundaries such as PBCs, the slowest mode in
the system is the tunneling between the two phases. This is
expected to proceed via mixed-phase striplike configura-
tions with two interfaces, whose probability is suppressed
by a factor of expð−σLÞ [46,47], where σ ¼ 2βcκ and κ is
the interface tension (which is exactly known for 2D Potts
models [37]). Thus, the relevant time is τðLÞ¼LαexpðσLÞ,
where α is an appropriate exponent. Therefore, the OS
behavior is expected to be controlled by the scaling
variables

r1 ¼ δðtÞL2 ¼ ðt=tsÞL2; r2 ¼ t=τðLÞ; ð7Þ

where ts is the time scale of the protocol (1). The deviations
from equilibrium are conveniently controlled by

s1 ¼ r2=r1 ¼ ts=½L2τðLÞ�: ð8Þ

We expect Erðt; ts; LÞ and IGðt; ts; LÞ, defined as in Eqs. (3)
and (5) and averaged at fixed t, to scale as

Er ≈ Esðs1; r1Þ; IG ≈ L2Csðs1; r1Þ; ð9Þ

in the OS limit t; ts; L → ∞ keeping r1 and s1 fixed,
thereby extending the EFSS relations (6). EFSS should be
recovered for s1 → ∞, where Esðs1; r1Þ and Csðs1; r1Þ
converge to their equilibrium counterparts Eeqðr1Þ and
Ceqðr1Þ, respectively. These OS arguments are quite general
and can be extended to any thermal FOT, in any dimen-
sion [48].
The above OS theory is checked by a numerical analysis

of Monte Carlo (MC) simulations of the 2D Potts model (2)
for q ¼ 20 and q ¼ 10. We mostly present results for
q ¼ 20. The dynamics is provided by the heat-bath
algorithm [49], which is a representative of a purely
relaxational dynamics. The time unit is a sweep of the
whole lattice. The temperature is changed according to
Eq. (1) every sweep, incrementing t by one.
We first consider data at t ¼ 0, i.e., r1 ¼ 0, as a function

of s1; see Fig. 1. Their optimal scaling is obtained when the
power of the prefactor of τðLÞ is α ≈ 2 [50]. We also verify
the OS of Er and IG (and other observables) with respect to
r1 [cf. Eq. (9)]; see [51]. Note that the approach to the OS
curves requires the necessary condition L ≫ ξ�, where ξ�
are the correlation lengths of the pure phases at T�

c
(ξ− ≈ ξþ ¼ 2.695 for q ¼ 20 [37]).
We now show that an interesting off-equilibrium behav-

ior develops in the infinite-volume limit, corresponding to
s1 → 0. As shown by Fig. 2, data at fixed ts have a well-
defined large-L limit; see the inset in Fig. 2. This is rapidly
approached for small values of δðtÞ≡ t=ts, e.g., δðtÞ≲ 0.02
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FIG. 1. MC data of Er for q ¼ 20 at t ¼ 0 versus s1 ¼
ts=ðL2þαeσLÞ, using the optimal value α¼2 [57]. For s1→∞,
the data converge to Eeqð0Þ ¼ 1=ð1þ qÞ (dashed line), since
equilibrium is approached for ts ≫ τðLÞ. The inset shows the
approach to the large-L limit at fixed s1.
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at ts ≈ 105, while significantly larger lattices are required
for larger δðtÞ. The energy density does not converge to its
equilibrium value as L → ∞ due to the fact that the system
settles in a metastable state with large coexisting droplets of
different colors.
The infinite-volume energy density (see Fig. 2) takes the

equilibrium high-T value Erðt ¼ 0Þ ¼ 1 at t ¼ 0 for any ts
and then shows a sharp decrease at a point δ�ðtsÞ, which
decreases with increasing ts. The system develops a non-
trivial OS behavior close to δ�ðtsÞ. For large L, the system
behaves as a gas of droplets of size R (evidence for this
behavior is provided in Ref. [51]). The relevant scaling
variables are expected to be analogous to r1 and r2 [cf.
Eq. (7)], with R replacing the size L. The relevant time
scale is that of the formation of droplets of size R. As the
time τd to create a droplet of size R increases exponentially
with R, ln τd ∼ R, we expect R ∼ ln t. Thus, the analogue of
the scaling variable r1 becomes (t > 0)

s2 ¼ ðt=tsÞ ln2 t: ð10Þ

In Fig. 3, we report the infinite-volume energy density and
IG for q ¼ 20 versus s2. We note a crossing point of the
energy curves for different values of ts at approximately
s�2 ≈ 0.85with E�

r ≈ 0.89. At the same value of s2, IG shows
a sharp change of behavior. These results suggest that, in
the limit ts → ∞, the OS functions develop a singular
behavior for s2 ¼ s�2. In particular, the infinite-volume
energy density takes the high-T value E∞ðs2Þ ¼ eþ ¼ 1
for s2 < s�2, while we expect E∞ðs2Þ ¼ e− ≪ 1 for s2 > s�2.
Note that, for large ts, ðt ln2 tÞ=ts ¼ s�2 implies t=ts ≈
s�2=ðln tsÞ2, so that the value βd of β at which the sharp
change occurs converges to βc as ts increases.
The behavior around s�2 turns out to be described by an

additional scaling Ansatz. As shown in Fig. 4, the energy
density E∞ðs2; tsÞ≡ Erðt; ts; L → ∞Þ scales as

E∞ðs2; tsÞ ≈ feð~s2Þ; ~s2 ¼ ðs2 − s�2Þtθs ð11Þ

with [50] θ ¼ 1=3. We stress that scaling is observed only
when using the variable s2. The estimate θ ¼ 1=3 is
reasonably accurate (10% accuracy). Also IGðs2; tsÞ shows
a scaling behavior, provided we multiply it by an additional
power of ts. Phenomenologically, we observe IGðtÞ≈
ðln tsÞ2t2=3s fGð~s2Þ; see the inset in Fig. 4 (the exponents
of ts and ln ts in the prefactor are an educated guess). A
similar analysis can be performed for q ¼ 10; see [51]. The
estimate of s�2 changes (s�2 ≈ 0.2 for q ¼ 10), but all other
conclusions hold. In particular, the MC data are again
consistent with θ ¼ 1=3. This singular behavior resembles
that at the mean-field spinodal point [3] or, more generally,
the power-law scaling at equilibrium continuous transitions.
However, here the location βd of the dynamic transition
converges to βc as ts→∞: βd−βc∼ðlntsÞ−2→0 [58].
To understand the behavior of the system for s2 ≈ s�2, one

may consider the evolution of the size of the clusters
formed by spins of the same color. A typical case is
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reported in Fig. 5. For s2 ≲ s�2, the system is disordered and
all clusters are small: Their typical size ld satisfies
ld ≲ ξþ, where ξþ is the correlation length of the pure
disordered phase [37]. For s2 ≈ s�2, clusters start growing.
There is a short coarsening interval [5,8,33], in which Er
decreases almost linearly. Then, the system settles into a
metastable state characterized by many coexisting large
clusters. Details are reported in Ref. [51].
One may also consider the dynamics induced by the

reverse linear protocol across βc, starting from an ordered
configuration (equal spins) at βi > βc and decreasing β
across the FOT, βðtÞ ¼ βcð1 − t=tsÞ, up to βf < βc. In this
case, the q-permutation symmetry is broken by the initial
condition. MC results show an analogous OS behavior. In
the infinite-volume limit, the system persists in the ordered
state up to a temperature TðtsÞ > Tc, where it transits to the
disordered state. For T ≈ TðtsÞ, one observes analogous OS
laws. Equation (11) holds with a corresponding s�2 and
exponent θ, which may differ from those of protocol (1);
see Fig. 6 and Ref. [51].
The OS theory can be applied to hysteresis phenomena

that occur when T is first decreased below Tc and then
increased above Tc. We mention that external periodically
varying fields have been already considered at magnetic
FOTs, where they give rise to a singular dynamic behavior
of the magnetization hysteresis [59,60].
In conclusion, we have developed an OS theory to

describe the off-equilibrium behavior of statistical systems
when their temperature is slowly varied across a thermal
FOT. We consider the linear protocol (1) and the reversed
one [61]. Our numerical study of the Potts model confirms
the general OS theory. In particular, in the infinite-volume
limit it shows two dynamic regimes, separated by a
spinodal-like transition point where the OS functions are
singular. Such a transition occurs at a time td > 0 scaling as
td ∼ tsðln tsÞ−2 in the large-ts limit. Therefore, a spinodal-
like behavior emerges dynamically in short-range models
without assuming long-range interactions as in the

mean-field theory [3]. The OS behavior arises from the
interplay between the exponentially large tunneling times at
Tc and the droplet formation. We expect that analogous
dynamic scaling behaviors emerge at any thermal FOT
characterized by these two features. Further investigations
are needed to clarify its degree of universality and to
develop a theory which is able to predict the exponent θ
entering the OS laws, such as Eq. (11).
Our results provide an effective framework to interpret

experimental data in many physical contexts, when thermal
FOTs are crossed by slowly varying T. For example, we
mention the formation of the quark-gluon plasma in heavy-
ion collisions [62], whose intrinsic space-time inhomoge-
neities complicate the study of the hadronic phase diagram,
and, in particular, the expected thermal FOT line at a
nonzero baryon chemical potential [63]. Another issue
concerns the Universe evolution. Kibble [1] made the first
analysis of the behavior of a system going across a
continuous transition, to study the defect production during
the Universe expansion. Analogous studies at FOTs may
shed some light on the behavior of an expanding and
cooling Universe going across a FOT [64].
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