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Obtaining accurate band structures of correlated solids has been one of the most important and
challenging problems in first-principles electronic structure calculation. There have been promising recent
active developments of wave function theory for condensed matter, but its application to band-structure
calculation remains computationally expensive. In this Letter, we report the first application of the
biorthogonal transcorrelated (BITC) method: self-consistent, free from adjustable parameters, and
systematically improvable many-body wave function theory, to solid-state calculations with d electrons:
wurtzite ZnO. We find that the BITC band structure better reproduces the experimental values of the gaps
between the bands with different characters than several other conventional methods. This study paves the
way for reliable first-principles calculations of the properties of strongly correlated materials.
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To reveal fertile and nontrivial physics in condensed
matter, first-principles electronic-structure calculation has
established itself as an indispensable tool in recent studies.
For this purpose, density functional theory (DFT) [1,2] has
played a leading role and has been applied to various
materials; however, the limitations of this theoretical
framework have come to light. One of the major problems
is an inaccurate description of strong electron correlations,
e.g., in transition metal oxides. The GW method [3–5] is a
promising way to ameliorate the inaccuracy of the band
structures and has been applied to several solids, including
d-electron systems. However, because the GW method is
often applied without satisfying self-consistency, a non-
trivial dependence on the initial DFT calculations is intro-
duced. It has also been reported that the GW method
sometimes exhibits severe difficulty in obtaining converged
results [6], owing to its perturbative nature.Another possible
choice is to construct effective models from DFT that
include correlation terms such as Hubbard U and to solve
the models using elaborated methodologies [7] such as
dynamical mean-field theory [8–10]. However, the exact
correspondence between the effective models and the
first-principles Hamiltonian is a nontrivial problem.
Recently, wave function theory (WFT), which had been

mainly applied tomolecular systems and established itself as
the gold standard in theoretical chemistry [11], has become
a promising alternative to DFT for accurate descriptions
of electron correlation in solids [12]. Among the most
powerful frameworks in WFT are first-principles quantum
Monte Carlo (QMC) methods [13,14], such as the varia-
tional Monte Carlo (VMC), diffusion Monte Carlo (DMC),
auxiliary-field quantum Monte Carlo (AFQMC), and

full-configuration-interaction (FCI) QMC methods. Other
kinds ofWFT, called post-Hartree-Fock (post-HF)methods,
have also been applied to condensed matter in recent years
[15–19]. However, their targets are in most cases limited
to solids with small unit cells, owing to their expensive
computational cost. In addition, the correlated band struc-
ture, which is quite useful in various kinds of theoretical
analyses, is not easily obtained inmanyWFTs. For example,
calculation of the band structure in the framework of VMC
or DMC requires a large number of single-point calculations
of the excited states, which is a clear difference from a
mean-field-like approach such as DFT, whereby the whole
band structure is obtained at once.
From this viewpoint, the transcorrelated (TC) method

[20–23] is a fascinating WFT that can be applied to solids
with reliable accuracy and moderate computational cost
[24–29]. The TC method adopts the so-called Jastrow
ansatz, which is based on a promising strategy often adopted
in several WFTs such as QMC methods to describe strong
electron correlations; i.e., the electron-electron distance is
included into many-body wave functions. Explicitly corre-
lated electronic-structure theory [30] in quantum chemistry
also adopts this strategy. In fact, theGutzwiller- and Jastrow-
correlation factors have often been used to describe strong
electron correlation, including the Mott physics in systems
such as the Hubbard model [31–34]. It is also important to
note that, unlike several WFTs, the whole band structure is
obtained at once by solving a one-body self-consistent-field
(SCF) equation in the TC method, as described later in this
Letter. Moreover, the TC method is deterministic, i.e., free
from the statistical error, unlike theQMCmethods.Accurate
calculations for the Hubbard model [35,36] and molecular
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systems [37–39] were also reported using the TCmethod or
other theories that have a close relationship with the TC
method. However, insofar as solid-state calculations are
concerned, the TC method has so far been applied only to
weakly correlated systems.
In this Letter, we present the first application of the TC

method to the band-structure calculation of a d-electron
system:wurtzite ZnO. 3d transitionmetal oxides have posed
theoretical challenges for first-principles band-structure
calculations, as it is well known that popular approximations
such as the local-density approximation (LDA) fail to
provide their band structures accurately, as we shall see
later. We find that the TC method with the bi-orthogonal
formulation (the BITC method) [29,40] successfully repro-
duces the experimental band structure of ZnO. We also
clarify how the Jastrow factor improves the first-principles
description of the correlated electronic states through
comparison of the band structures and electron densities
among the BITC and other methods.
The central concept of theTCmethod is tomake use of the

similarity transformation of the many-body Hamiltonian
with the Jastrow factor F ¼ exp½−Pi;juðxi; xjÞ�,

HΨ ¼ EΨ⇔HTCΦ ¼ EΦ ðHTC ¼ F−1HFÞ; ð1Þ
where the correlated wave function is represented as
Ψ ¼ FΦ and HTC is called the TC Hamiltonian. Here,
x denotes a pair of space and spin coordinates: x ¼ ðr; σÞ. By
adopting the so-called Slater-Jastrow ansatz, Φ becomes a
Slater determinant consisting of one-electron orbitals, ϕðxÞ:
Φ ¼ det½ϕiðxjÞ�, and Eq. (1) yields an SCF equation for one-
electron orbitals that experience the effective interaction
described with the TC Hamiltonian:
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where vextðx1Þ, v2bodyðx1; x2Þ, and v3bodyðx1; x2; x3Þ are the
external potential including the nucleus-electron interaction
[41] and the two- and three-body effective interactions in the
TC Hamiltonian, defined as

v2bodyðx1;x2Þ≡ 1
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and

v3bodyðx1; x2; x3Þ≡∇1uðx1; x2Þ ·∇1uðx1; x3Þ
þ∇2uðx2; x1Þ ·∇2uðx2; x3Þ
þ∇3uðx3; x1Þ ·∇3uðx3; x2Þ; ð4Þ

respectively.As is evident, theHFmethod can be regarded as
the TCmethodwith u ¼ 0. Owing to this effective one-body
picture, it is possible to treat the many-body correlation with
moderate computational cost. In addition, one can obtain the
band structure of the quasiparticles by using the real part
of the eigenvalues of the ϵ matrix on the right-hand side of
Eq. (2).One of the authors proved in priorwork [23] that such
a use of the ϵ matrix as quasiparticle energies is consistent
with Koopmans’ theorem. We note that one can systemati-
cally improve the accuracy of the TC method by utilizing
quantum chemical methodologies such as the coupled-
cluster and configuration interaction methods to go beyond
a single Slater determinant (e.g., Refs. [22,29,40]).
Here, the Jastrow function, uðx; x0Þ, is set to the following

simple form without adjustable parameters: [13,24,42,43]

uðx; x0Þ ¼ A
jr − r0j ½1 − exp ð−jr − r0j=Cσ;σ0 Þ�; ð5Þ

where A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V=ð4πNÞp

(N is the number of valence
electrons in the simulation cell, V is the volume of the
simulation cell) andCσ;σ0 ¼

ffiffiffiffiffiffi
2A

p
(spin parallel:σ ¼ σ0),

ffiffiffiffi
A

p
(spin antiparallel:σ ≠ σ0). The long-range asymptotic form
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FIG. 1. Calculated band structures using the LDA (solid lines),
all-electron G0W0 [60] (green circles), BITC (solid line), VMC
[61] (orange circles), and HF (solid line) methods. Experimental
data taken from Ref. [62] are shown with black dots in the middle
figure. Blue broken lines show the other experimental data for the
positions of the conduction-band minimum, the O-2p bottom
[63], and the Zn-3d peak position [64], which might correspond
to the averaged position of the Zn-3d bands. The valence-band
maximum energy is set to zero.
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of this function describes the screening effect of the electron-
electron Coulomb interaction [44]. The short-range behav-
ior of the exact Jastrow function should obey the cusp
condition [45–47]. The Jastrow ansatz adopted here works
well for state-of-the-art QMC methods [13,14]. Although
our choice of the Jastrow function is rather simple, we shall
see that, nevertheless, it works well not only for weakly
correlated systems [24,25] but also for the 3d-electron
system. Of course, it is possible to improve a quality of
the many-body wave function by using a complicated
Jastrow factor, but we adopted this simple trial wave
function to realize moderate computational cost.
In this study [49], we adopted the BITC method [29,40],

in which the left one-electron orbitals, χðxÞ in the left Slater
determinant X ¼ det½χiðxjÞ�, replace the bra orbitals in the
SCF Eq. (2), while the ket orbitals remain ϕðxÞ. Because the
TC Hamiltonian is non-Hermitian, ϕðxÞ and χðxÞ become
different.Wedonot show the band structure calculated using
the TC method without the biorthogonal extension here,
because of the large imaginary part of the eigenvalues [57].

Figure 1 presents the band structures of ZnO calculated
with the LDA, all-electron G0W0 starting from LDA using
the LAPW [58] method, BITC, and HF methods. The
characteristic energy values in these band structures, as
evaluated at the Γ point, are listed in Table I. Table I also lists
calculated values with various other methods. By focusing
on the gaps between the bands with different characters as
listed in Table I, the BITC band structure exhibits better
accuracy than many other conventional methods, including
the G0W0 method starting from LDA, and accuracy com-
parable to that for the most accurate varieties of the GW
scheme, i.e., theG0W0 method starting fromHSE03 and the
self-consistent GW methods such as the QSGW method
[59]. It is noteworthy that both the GW and BITC methods
yield such successful results despite being based on con-
ceptually different formulations. It is important that the
BITCmethod is based on the self-consistent formulation and
thus is independent of DFT calculations, whereas theG0W0

method strongly depends upon the unperturbed DFT
calculations, as seen in Table I. We should also note that,

TABLE I. Some characteristic values in the band structures of ZnO, as calculated by several methods [65]. The bottoms of the Zn-3d
and O-2p bands are evaluated at the Γ point where the valence-band top is set to zero for each method. The errors between the calculated
and experimental values shown in Ref. [63] are presented in parentheses. For LDA, the O-2p bottom and Zn-3d-averaged levels are not
presented here because of the overlap among the O-2p and Zn-3d bands. For G0W0 (HSE03), the Zn-3d bottom position was read from
the density of states presented in Ref. [66]. All values are in eV.

Band gap [Error] O-2p bottom [Error] Zn-3d averaged Zn-3d bottom

DFT LDA 0.7 ½−2.7� � � � � � � � � � −5.8
HSE03a 2.1 ½−1.3� −4.9 ½þ0.4� � � � −6.5

GW G0W0ðLDAÞb 2.4 ½−1.0� −5.2 ½þ0.1� � � � −6.5
G0W0ðHSE03Þ 3.2a, 3.46c ½−0.2;þ0.06� � � � � � � −6.21c −7.2a

G0W0 ðGGAþ UÞc 2.94 ½−0.46� −5.6 ½−0.3� −6.33 −7.1
(U − J ¼ 6 eV)

G0W0þVd ðGGAþUÞc 3.30 ½−0.1� −5.5 ½−0.2� −7.45 −8.0
(U−J¼6eV, Vd ¼ 1.5 eV)

QSGWd 3.87 ½þ0.47� −5.3 ½�0� � � � −7.2
scGW (RPA) e 3.8 ½þ0.4� � � � � � � −6.4 � � �
scGW (e-h)e 3.2 ½−0.2� � � � � � � −6.7 −

WFT AFQMCf 3.26(16) ½−0.14� � � � � � � � � � � � �
VMCg 3.8(2) ½þ0.4� � � � � � � � � � � � �
BITC 3.1 ½−0.3� −5.1 ½þ0.2� −9.1 −9.7
HF 11.4 ½þ8.0� −5.7 ½−0.4� −9.3 −9.9

Expt. 3.4h −5.3h, −5.2ð3Þi −7.5c, −7.5ð2Þj,
−8.5ð4Þk, −8.6ð2Þk,

−8.81ð15Þi

� � �

aRef. [66].
bRef. [60].
cRef. [67].
dRef. [68].
eRef. [69].
fRef. [70].
gRef. [61].
hRef. [63].
iRef. [64].
jRef. [71].
kRef. [72].
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while some methods employ parameters U and Vd, which
are difficult to determine in the ab initio way, the BITC
method does not use such parameters.
Consistency of the calculated band gaps among WFTs

that use similar trial wave functions (AFQMC, VMC, and
BITC) is also remarkable. We again stress that the whole
band structure is not easily obtained in QMC simulations
and requires many single-point excited-state calculations.
We can see that the band structures calculated with the
BITC and HF methods are very similar, except for the band
gap. Therefore, the main role of the Jastrow factor used in
this study on the band structure seems to be improvement
of the size of the band gap through the screening effect of
the electron–electron interaction, which is described with
the long-ranged asymptotic behavior of the Jastrow factor.
To obtain a more accurate band structure, e.g., with respect
to the depth of the Zn-3d bands, more elaborated Jastrow
factors, as used in QMC studies [13,14], will be necessary.
Because the Zn-3d bands are almost flat, a key point might
be accurate description of the atomic states, which is an
important issue for future investigation.
For the GW method, it was pointed out that the shallow

Zn-d bands can strengthen the p-d hybridization, and thus
can result in underestimation of the band gap [67,69]. A
similar situation might also be realized in the BITC band
structure, whereas the Zn-d bands are rather deep [73] and
so the band gap can be overestimated. However, the BITC
band gap is also affected by the A parameter in the Jastrow
factor, as mentioned in the above comparison between the
BITC and HF band structures. Because the A parameter
used in this study was determined by RPA analysis of
the uniform electron gas, it can cause overscreening in the
insulator [26], thereby decreasing the band gap. One
possibility is that these two factors are canceled here,
but more detailed investigation on other materials is also an
important future issue [74].
Figure 2 presents the electron densities calculated with

the LDA, HF, and BITC methods on the line shown in
the crystal structure. The electron density obtained by the
BITC method is defined as nðrÞ ¼ Re½PN

i¼1 χ
�
i ðrÞϕiðrÞ�,

where the condition
R
drnðrÞ ¼ N is satisfied due to the

biorthonormalization condition hχijϕji ¼ δij. We can see
that the electron densities of these methods are almost the
same. However, a slight increase of the electron density at
the atomic sites is observed for the BITC method compared
with the others. Such a tendency is consistent with the fact
that the strong divergence of the electron-electron Coulomb
repulsion is alleviated for the effective two-body interaction
in the similarity-transformed TC Hamiltonian, because the
Jastrow factor satisfies the cusp condition. More concretely,
the ∇2

1uðx1; x2Þ and ∇2
2uðx1; x2Þ terms in Eq. (3) yield

1=jr1 − r2j divergence with a different sign than the
electron-electron Coulomb repulsion. As can be seen in
the proof of the cusp condition [45,46], the true many-body
wave function should exhibit deformation described with

the two-body degrees of freedom near the electron-electron
coalescence point, which cannot be represented solely
with one-body degrees of freedom. This is a characteristic
advantage of the Slater-Jastrow-type wave function for
the description of localized electronic states, such as in
strongly correlated systems. It is noteworthy that the atomic
calculations of the TC method also exhibit a similar
tendency for localization [23].
Finally, we mention the computational effort required

for the BITC calculation. Computation takes place on time
scales given by OðN2

kN
2
bNpw logNpwÞ, where Nk, Nb, and

Npw are the numbers of k-points, occupied bands, and plane
waves, respectively [76]. This is the same order as that for the
HF or hybrid DFT calculations with a prefactor about 20 to
40 [77]. The BITC calculation involves neither the frequency
index nor the convergence with respect to the number of
conduction bands, unlike some perturbative methodologies
such as theGW method. As can be seen from the fact that the
hybrid DFT calculations have now been applied to various
periodic systems, the computational cost of theBITCmethod
is reasonable for solid-state calculations. One remaining
obstacle for wide application of the BITC method is that we
use the norm-conserving pseudopotential with a very high
cutoff energy to handle the semicore states at present.
However, this problem is not inherent to the BITC method
and can be overcome in principle by the development of a
pseudopotential formalism such as the PAWmethod [78,79]
adapted to the TCmethod, which is an important future issue
[80].We alsonote that thedeformationof the electron density
near atomic sites shown in Fig. 2 also implies the importance
of careful treatment for the core states. This can also be a
common problem for QMC calculations using the Jastrow
correlation factor.
To conclude, we apply the biorthogonal version of the

TC method to wurtzite ZnO and find that it well reproduces
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FIG. 2. Calculated electron densities on the blue line shown in
the crystal structure are presented for the LDA, BITC, and HF
methods with solid black, broken blue, and broken red lines,
respectively. The crystal structure was depicted using the VESTA

software [75].
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the experimental band structure. Our study encourages
further investigation of other strongly correlated materials
using the BITC method.
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