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We study gap solitons which appear in the topological gap of 1D bosonic dimer chains within the mean-
field approximation. We find that such solitons have a nontrivial texture of the sublattice pseudospin. We
reveal their chiral nature by demonstrating the anisotropy of their behavior in the presence of a localized
energy potential.

DOI: 10.1103/PhysRevLett.118.023901

Topologically nontrivial structures are currently the
focus of attention of the scientific community.
Topological insulators are studied in electronic systems
for fermionic particles [1] but also in analog systems for
bosonic particles (atomic lattices and photonic “topological
mirrors” [2–9]). The advantage of artificial photonic
systems lies in their design flexibility and the possibility
of direct wave function measurements. The properties of
such structures are relatively well explored in the linear
regime, where the topological invariants have been found to
characterize the bands [10] and determine their properties,
including the existence of chiral edge states [11] in the
gaps. The nonlinear regime is much less explored. Indeed,
an interacting quantum fluid exhibits topological properties
on its own [12], and one can expect them to become even
richer when combined with the linear band topology
[13–18].
A one-dimensional (1D) periodic lattice with a certain

degree of dimerization is one of the simplest lattices
exhibiting topological properties [19–21]. Such a structure
shows a splitting of a single s-type band into two bands,
corresponding to the bonding and antibonding states of the
individual dimers. These subbands, characterized by a
topological invariant (the Zak phase [22]), are separated
by a gap, whose topology is determined by the Zak phase of
the band below. The properties of nonlinear solutions
existing in this gap can be expected to be strongly affected
by its topology. The Su-Schrieffer-Heeger (SSH) soliton is
perhaps one of the most famous examples of topologically
nontrivial solutions [23] for a dimer chain. However, it
involves dynamical dimerization, that is, modification of
the properties of the lattice itself: This soliton is a domain
wall between two distinct lattices. Similar dimerization
domains can be observed in ionic chains [24,25] and
artificially created in photonic chains [26]. Recently, chiral
solitons of the SSH type were observed in double chains
[27]. But there also exist solitonic nonlinear solutions,
called gap solitons, that do not require the modification of
the lattice and do not close the gap, contrary to the chiral
edge states and the SSH soliton. Many of them have been
studied in dimerized and zigzag lattices in acoustics [28],

Bose condensates [29], and photonic systems [30–33]
(including PT-invariant ones [34–38]), with a particularly
interesting recent experimental observation [39]. However,
the crucial role played by the anisotropy of the Bloch part
of the soliton wave function with respect to the two
different atoms forming the lattice (and defining the
sublattice pseudospin) has remained unnoticed.
In this work, we demonstrate that a gap soliton in a single

dimer chain can exhibit chirality. We study a gap soliton in
the topological gap of a dimer chain, first using the tight-
binding variational approach and then by direct solution of
the Gross-Pitaevskii equation with a periodic potential.
This solution is strongly different from the SSH soliton
[27], because it does not involve the modification of the
lattice itself. It is also different from the dark-bright solitons
[40], because it does not involve either the polarization
degree of freedom or an extended condensate. The topo-
logical gap soliton (TGS) is a typical localized solution,
appearing from the states at the boundary of a topological
gap. We demonstrate that such solitons exhibit a nontrivial
pattern of sublattice pseudospin due to pseudospin-
anisotropic interactions. We determine their sublattice-
polarization degree and demonstrate the chiral nature of
these solitons via their asymmetric behavior with respect to
a localized defect, which gives a striking contrast with the
isotropic behavior of nontopological gap solitons (GSs).
These results are confirmed by direct calculations.
The practical realization of the system can be based on a

patterned microcavity in the regime of strong coupling [41],
with the single-particle states being the cavity exciton
polaritons, hybrid light-matter particles characterized by
strong interactions thanks to their excitonic fraction, and
where bright solitons are observed even without patterning
[42,43]. However, our results are valid for any photonic
system, where solitonic states can be observed thanks to
nonlinearities such as coupled waveguides [26,39], and
also for atomic condensates, for which periodic lattices are
routinely created [2,44] but which would require putting
the condensate out of thermal equilibrium. A closer look at
recent experimental data in a photonic dimer chain [39]
confirms our predictions for the chiral nature of the TGS.
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Tight-binding description.—A sketch of the dimer chain
is shown in Fig. 1(a). Each minimum of the potential
corresponds to an individual site, which is called A or B.
Since the barriers between the sites have different heights,
the tunneling coefficients t and t0 are also different. The
Hamiltonian can be separated into linear (kinetic) and
nonlinear (interaction) parts:

Ĥ ¼ Ĥlin þ Ĥint: ð1Þ

If one neglects the degree of freedom corresponding to the
polarization of light or the spin of electrons, the linear
Hamiltonian of a dimer chain can be written as [45]

Ĥlin ¼
X
m

t0b̂†mâm þ tâ†mþ1b̂m þ H:c:; ð2Þ

where â; b̂ are the annihilation operators on the corre-
sponding atoms [A and B, Fig. 1(a)] of the cell m. We
assume that t0 > t, meaning that the unit cell A-B corre-
sponds to a tightly bound “molecule.” Using the Bloch
theorem, this Hamiltonian can be rewritten in the matrix
form in the basis ψk ¼ ðψA;k;ψB;kÞT :

ĤlinðkÞ ¼ −
�

0 t0 þ te−ika0

t0 þ teika0 0

�
ð3Þ

with period a0. The sublattice spinor ðψA;k;ψB;kÞT allows
defining the sublattice pseudospin: SZ¼ðjψAj2− jψBj2Þ=2,
SX ¼ ReðψAψ

�
BÞ, and SY ¼ Imðψ�

AψBÞ. The Hamiltonian
can then be represented as an effective magnetic field ΩðkÞ
acting on this pseudospinH ¼ −ℏΩS=2. The dispersion of
the chain is plotted in Fig. 1(b). The topological invariant
analog, characterizing the two subbands, is the Zak phase
[22]. Contrary to the Chern number, the Zak phase is gauge
dependent [46]: The unit cell of a chain with inversion
symmetry can be chosen for both t0 > t and t0 < t in such a
way [22,47] that the Zak phase of a given band is �π,
indicating nontrivial topology (associated with protected
edge states in finite chains) induced by the dimerization

[48]. The gap between these bands can thus be called
“topological.”
The nonlinear part of the Hamiltonian reads

Ĥint ¼
α

2

X
m

â†mâ
†
mâmâm þ b̂†mb̂

†
mb̂mb̂m; ð4Þ

where α is the interaction constant. We neglect the
interaction between the sites A and B. We then use the
mean-field approximation for the macrooccupied state to
find the interaction energy.
Variational approach.—The TGS is a stable localized

solution of the nonlinear equation, whose energy lies in the
topological gap. An ordinary GS with its energy in a semi-
infinite gap can also appear in the same lattice. We are
going to study the properties of the TGS and compare it
with the ordinary GS. To find the nonlinear soliton solution,
we use the variational approach. The gap solitons are
usually formed from the Bloch states at the edge of the gap.
These Bloch states will determine the wave function of the
soliton: For TGS, the wave function changes sign between
the unit cells (k ¼ π=a0), whereas for the ordinary GS
(upper gap), the wave function changes sign between each
pillar (k ¼ 2π=a0). This is why the TGS was also called the
antisymmetric soliton [31]. The most important feature of
the gap soliton, made of negative mass states, is that it has
to maximize the energy and not to minimize it.
In our dimer chain, the trial function has to take into

account the fact that the interactions are spin-anisotropic
with respect to the sublattice pseudospin. Indeed, a particle
on a given site (say, A) interacts only weakly with a particle
on a different site (say, B). Maximal interaction energy
sought by the soliton is therefore achieved by putting all
particles on the same lattice site, that is, by the “circular”
polarized states of the sublattice pseudospin, and the
corresponding “effective field” is oriented in the Z direc-
tion. The pseudospin cannot be constant everywhere,
because other terms in the Hamiltonian (appearing due
to dimerization) correspond to fields in the X and Y
directions (see [48] for details). We can thus expect the
soliton pseudospin texture to be nontrivial, as a conse-
quence of the gap topology.
A general shape of the trial function (in the continuous

limit) with the two pseudospin components can be con-
structed using the hyperbolic secant profile, known to be a
good solution for the bright soliton of the Gross-Pitaevskii
equation:

ψðx; a; bÞ ¼ 2
ffiffiffiffiffiffiffiffi
n=a

p �
1= cosh½ðx − bÞ=a�
1= cosh½ðxþ bÞ=a�

�
; ð5Þ

where a is the soliton width, b is the displacement of the
maximum of each component with respect to the global
center of mass, and n is the soliton density. Close to the
edge of the Brillouin zone, the Hamiltonian is reduced to

(a) (b)

A

A

A A A AB

B

BB B B
t t

FIG. 1. (a) Periodic potential of a dimer chain and the
corresponding tight-binding representation. (b) Tight-binding
dispersion of the dimer chain with the topological gap in the
middle for t ¼ 0.9t0.
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the Dirac equation with nonlinear terms, extensively
studied in the past [29,49–52]. However, it does not have
stable solutions in our case because of the pseudospin-
anisotropic interactions (see [48] for details). Thus, we
consider the full tight-binding Hamiltonian (3) in the
reciprocal space and work with the Fourier transforms of
the trial wave functions to calculate the kinetic energy
Ekinða; bÞ. To calculate the interaction energy, the integra-
tion should be performed in real space:

EintðaÞ ¼
1

2
α

Z þ∞

−∞
ðjψAj4 þ jψBj4Þdx; ð6Þ

which gives a 1=a dependence Eint ¼ n2=12a.
The variational energy Evarða; bÞ ¼ Ekinða; bÞ þ

Eintða; bÞ demonstrates a local maximum with respect to
both a and b, as shown in Fig. 2(a). The anisotropy of the
TGS is clearly visible in this figure: A maximum (marked
with a cross) is present only for a positive value of b
(determined by the dimerization of the lattice), correspond-
ing to a particular pseudospin texture, whereas the other
pseudospin texture does not allow a stable solution (see
[48] for details). Therefore, the TGS indeed has a nontrivial
pseudospin texture.
Numerical solution.—To verify the analytical solution,

we have solved the Gross-Pitaevskii equation for a realistic
periodic 1D square potential. The solution on a grid
(without the tight-binding approximation) is obtained by
using the iterative method. The equation reads

EψðxÞ ¼ −
ℏ2

2m
∂2

∂x2 ψðxÞ þ αjψðxÞj2ψðxÞ þ UðxÞψðxÞ:
ð7Þ

Here UðxÞ is the periodic potential of a dimer chain,
shown in Fig. 1(a). This equation does not contain the
sublattice pseudospin in the explicit way (ψ is not a spinor),
because it is not in the tight-binding approximation.
However, the pseudospin can be extracted from the solution
ψðxÞ by analyzing the densities in even and odd minima of
the potential separately: nA=BðxÞ ¼

R jψðxÞj2UA=BðxÞdx.
Next, we study the internal structure of GS and TGS more
in detail to verify our predictions.
Figure 2(b) highlights the two opposite sides of the TGS

(red curve), where its sublattice polarization (red arrows) is
clearly visible. We see that, counterintuitively, at the left
edge the intensity is mostly concentrated on the A atoms
(“spin up”), whereas on the right edge the intensity is on the
B atoms (“spin down”), contrary to the GS (blue curve),
showing a typical soliton profile. This feature is present in
calculated and measured figures of Refs. [31,32,39], but it
has not drawn the attention it deserves as a signature of
anisotropy of the soliton. The extracted density of each
sublattice pseudospin component (black and red curves) is
shown in Fig. 2(c). The log scale plot clearly exhibits a
1= cosh2ðx=aÞ dependence of a bright soliton, with the two
components displaced with respect to the soliton center,
justifying our trial wave function.
Analysis of the TGS features.—The variational approach

allows us to find the sublattice-polarization degree ρAB of
the TGS, which is the density difference between the A and
B sites [see the inset in Fig. 2(c)],

ρABðxÞ ¼ tanh ðb=aÞ tanh ðx=aÞ; ð8Þ

which, considering the limit x → ∞, gives ρAB∞ ¼
tanhb=a. This result characterizes the sublattice-polariza-
tion texture of the gap soliton, and, since the soliton size a
decreases with the number of particles while b remains
fixed, its polarization degree increases with n.
The counterintuitive TGS density distribution within the

unit cell, with more particles on the pillar away from the
soliton center (contrary to the usual GS), can be understood
qualitatively from Fig. 2(d), showing the wave function
over two unit cells. To maximize the interaction energy, the
particle distribution within each dimer (rose rectangle)
should be maximally anisotropic, and the particles tend
to localize on either A (green circle) or B (yellow circle). On
the other hand, the main contribution to the kinetic energy
is due to the change of sign of the wave function between
the cells. Its minimization imposes the wave function to be
minimal on the A pillar (green circle), because the neigh-
boring cell is closer to the TGS center and thus has a higher
density (black circle) than the other neighbor. This is in
contrast with the ordinary GS, which has a wave function

b/
a

0

a/a0

0 5 10 15 20

0

2

4

6

-2

-4

-6

X
(a)

(c) (d)

(b)

FIG. 2. (a) The energy as a function of variational parameters a,
b (red, maximum). (b) Potential profile together with the GS (blue
curve) and TGS (red curve) density, demonstrating opposite TGS
sublattice polarization (red arrows) on two cells (marked in
green). (c) The two sublattice pseudospin components (A, black;
B, red) extracted from the full wave function ψ . The inset shows
the sublattice polarization degree. (d) Potential and the GS (blue
curve) and TGS (red curve) wave functions (circles discussed in
the text).
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changing sign between each pillar and is therefore not
subject to this polarization mechanism.
The opposite polarization degree of the sublattice pseu-

dospin on each side is crucial, because it distinguishes the
TGS from the GS of the upper gap and leads to the
anisotropic behavior of the TGS. It can be experimentally
probed by considering the effect of a localized potential
breaking the symmetry between the A and B sites. In the
tight-binding approximation, such potential can be
expressed as a local effective magnetic field ΩZ ¼ δðxÞ,
and the energy of the soliton centered at x0 in the presence
of such a field is given by

ETGS ¼
Z

Ω · Sdx ∝
tanh ðb=aÞ tanhðx0=aÞ

cosh2ðx0=aÞ
: ð9Þ

The asymmetry of this expression is seen in Fig. 3(a) (gray
line). A TGS located on one side of the field will be
attracted to the defect, whereas a TGS located on the other
side will be repelled to infinity as indicated by the black
arrows. On the contrary, the energy of the ordinary GS
formed from the states of the upper band in the presence of
a δ potential can be written as

EGS ¼
Z

VðxÞjψðxÞj2dx ∝
1

cosh2ðx0=aÞ
: ð10Þ

It is plotted in Fig. 3(a) (blue line): A positive localized
potential attracts the ordinary GS whatever its initial
position, which oscillates around this defect.
Chiral dynamics.—We have calculated the dynamics of

both TGS and GS solving Hamilton’s equations:

_x0 ¼
∂H
∂p0

; _p0 ¼ −
∂H
∂x0 ; ð11Þ

where x0 and p0 are the TGS or GS position and
momentum, respectively, and its Hamiltonian is

Hðx0; p0Þ ¼
p2
0

2m
þ ETGS=GSðx0Þ; ð12Þ

where m is the soliton mass. We take p0ðt ¼ 0Þ ¼ 0 as an
initial condition. The resulting soliton trajectories can be
classified into several families, depending on the initial
position x0ðt ¼ 0Þ and on the soliton type, shown in
Fig. 3(b). The ordinary GS trajectories are shown in cyan,
for the initial positions shown as cyan points in Fig. 3(a).
The GS is always confined and exhibits anharmonic
oscillations because of the potential profile EGS ∝ 1=
cosh2ðx0=aÞ. The TGS can be either confined [blue and
green lines, initial positions in blue and green in Fig. 3(a)]
or delocalized (black and red curves). The regime depends
on the sign of the TGS energy determined by its initial
position x0ðt ¼ 0Þ. The period of the anharmonic oscil-
lations for the localized case strongly depends on the
energy (compare blue and green curves).
This behavior, which is the main dynamical consequence

of the TGS chirality, is confirmed by numerical simula-
tions, shown in Fig. 4, performed by solving the time-
dependent Gross-Pitaevskii equation

iℏ
∂ψ
∂t ¼ −

ℏ2

2m
Δψ þ αjψ j2ψ þ Uψ ð13Þ

for polaritons (see [48]) with a pulsed excitation

ψðxÞjt¼0 ¼
ffiffiffi
n

p
e−ðx−x0Þ2=σ2 sin

�
2πx
a0

�
cos

�
πx
a0

�
ð14Þ

for TGS and without the cosine for GS. Depending on the
initial position, the TGS is either attracted to the pointlike
magnetic field, in which case it oscillates [Fig. 4(a)], or

(a) (b)

(x /a)0

(x
/a

)
0

FIG. 3. (a) Energy of the soliton as a function of its position
with respect to the localized potential δðxÞ: TGS (gray curve) and
GS (blue curve). (b) Soliton trajectories of different families: TGS
(black, red, navy, and green curves) and GS (cyan curve).
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FIG. 4. Soliton trajectories plotted as the particle density as a
function of position and time: (a),(b) TGS, oscillating trajectory,
or free acceleration, depending on the initial soliton position. (c),
(d) Oscillating trajectory of an ordinary GS for the same defect.
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repelled and accelerated away from it [Fig. 4(b)]. This
behavior is a clear signature of its anisotropy, manifested in
the pseudospin pattern. Contrary to the TGS, an ordinary
GS does not exhibit this anisotropic behavior [oscillating
behavior in both Figs. 4(c) and 4(d)], because it does not
have the chiral pseudospin texture. The agreement between
the analytical model based on the Hamilton’s equations and
the full numerical simulations can be seen in Supplemental
Material ([48], Fig. S2).
In conclusion, we have analyzed the properties of

solitons in the topological gap of a 1D bosonic dimer
chain. We have found that such solitons exhibit a chiral
pattern of their sublattice pseudospin, allowing them to
behave anisotropically, contrary to the ordinary GS. The
soliton wave function and the resulting pseudospin texture
are obtained analytically in the tight-binding approximation
using a variational approach. These results are confirmed
by the direct numerical solution of the GP equation and are
by several aspects comparable with those of previous
theoretical works [31,32] and with a recent experimental
observation [Fig. 2(b) of Ref. [39]]. However, the crucial
anisotropic pseudospin texture and the chiral behavior of
the antisymmetric soliton have passed unnoticed in
these works.

We acknowledge the support of the project “Quantum
Fluids of Light” (ANR-16-CE30-0021).
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