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The Porter-Thomas (PT) distribution of resonance widths is one of the oldest and simplest applications
of statistical ideas in nuclear physics. Previous experimental data confirmed it quite well, but recent and
more careful investigations show clear deviations from this distribution. To explain these discrepancies,
Volya, Weidenmüller, and Zelevinsky [Phys. Rev. Lett. 115, 052501 (2015)] argued that to get a realistic
model of nuclear resonances is not enough to consider one of the standard random matrix ensembles which
leads immediately to the PT distribution, but it is necessary to add a rank-one interaction which couples
resonances to decay channels. The purpose of this Letter is to solve this model analytically and to find
explicitly the modifications of the PT distribution due to such an interaction. Resulting formulas are simple,
in good agreement with numerics, and could explain experimental results.
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Random matrix (RM) theory has undeniable success in
describing nuclear physics data, in particular statistical
properties of nuclear resonances and the distribution of
their widths (see, e.g., reviews [1–3] and references
therein). One of the simplest and widely used RM
predictions is the statement that resonance widths are
distributed as modulus square of RM eigenfunctions. For
large dimensional invariant RM ensembles the latter are
described by the Gaussian distribution which leads to the
famous Porter-Thomas (PT) law [4]:

PβðxÞ ¼
1

ð2πxÞ1−β=2lβ=2 exp
�
−
βx
2l

�
: ð1Þ

In nuclear physics x is reduced resonance width, and in RM
theory x ¼ NjΨj2, where Ψ is any eigenfunction compo-
nent and N is the matrix dimension. Index β ¼ 1 or 2 for,
respectively, time-invariant or time-noninvariant systems.
Constant l equals the mean value of x. The standard choice
is hxi ¼ 1 and l ¼ 1.
In RM theory the PT law is a theorem for invariant

ensembles in the limit N → ∞ (see, e.g., Ref. [5]). For
physical problems like nuclear resonances its applicability
is not guaranteed and requires experimental verification.
Older experiments (cf. Refs. [1,2]) were in reasonable
good agreement with this law. Nevertheless, recent
experimental results and more careful treatment of old
results demonstrate a clear disagreement with the PT
distribution [6–8]. As RM theory is one of the corner-
stones of quantum chaos in nuclear physics, it is important
to understand the origin of the discrepancy. Different
scenarios have been proposed so far (see Refs. [9–12]
among others).
After a careful analysis, the authors of Ref. [12] came

to the conclusion that a realistic model of nuclear s-wave
resonances should include in addition to the RM term a

rank-one interaction which couples resonances to decay
channels, and they argued that the effective Hamiltonian
(see Refs. [2,13]) can be chosen in the form

Mij ¼ Gij þ Zδi1δj1: ð2Þ

Here Gij ≡GðβÞ
ij is either a N × N real symmetric random

matrix (β ¼ 1) or a complex Hermitian one (β ¼ 2) with
the Gaussian distribution

PðGijÞ ∼ exp

�
−

β

4σ2
TrðGG†Þ

�
: ð3Þ

The mean eigenvalue density of such matrices when
N → ∞ is given by the Wigner semicircle law (see, e.g.
Ref. [5]):

ρWðEÞ ¼
1

2πσ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Nσ2 − E2

p
: ð4Þ

The case of Hermitian matrices Eq. (2) (i.e., with real Z) is
investigated here. According to Ref. [12], the imaginary
part of Z is related with conjectural nonstatistical gamma
decays, and the calculation of its influence is beyond
the scope of this Letter. Notice also that the exact solution
for pure imaginary Z has been known for a long time
(see Ref. [3] and references therein).
To get a nontrivial limit, it is assumed that

κ ¼ Z

σ
ffiffiffiffi
N

p ð5Þ

remains constant when N → ∞.
In Ref. [12] it was noted that for β ¼ 1 and real κ the

distribution of x ¼ NjΨ1j2, whereΨ1 is the first component
of eigenvectors of matrix Eq. (2), does deviate from the
PT law. But this conclusion was based only on numerical
calculations and no clear physical picture had emerged.

PRL 118, 022501 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

13 JANUARY 2017

0031-9007=17=118(2)=022501(5) 022501-1 © 2017 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.115.052501
http://dx.doi.org/10.1103/PhysRevLett.118.022501
http://dx.doi.org/10.1103/PhysRevLett.118.022501
http://dx.doi.org/10.1103/PhysRevLett.118.022501
http://dx.doi.org/10.1103/PhysRevLett.118.022501


The purpose of this Letter is to demonstrate that the eigen-
function distribution of matrix Eq. (2) can be found analyti-
cally for large N and real Z. The main result of this Letter is
that this distribution has the same functional form as the PT
distribution Eq. (1) but with an important difference that l
(and, consequently, themean value of x) in these expressions
is not a universal constant but a certain function of state
energy E and a dimensionless coupling constant. As a
consequence, such a simple Gaussian character of the
resulting distribution is valid only for eigenfunctions belong-
ing to eigenvalues in a narrow energy interval. The distri-
bution of eigenfunctions in a large window is not Gaussian
but equals a weighted integral over Gaussian functions.
The model Eq. (2) is an old one (see, e.g., Ref. [14]), but

it seems that its eigenfunction distribution has not been
calculated so far. The possibility of explicit calculations
is based on the rank-one structure of interaction which
permits us to express the eigenvector modulus through
eigenvalues of unperturbed and perturbed matrices. We
denote eigenvalues and eigenfunctions of matrices G and
M as follows (eigenstates are indexed by greek letters):

XN
j¼1

GijΦjðαÞ ¼ eαΦiðαÞ;
XN
j¼1

MijΨjðαÞ ¼ EαΨiðαÞ:

ð6Þ
All eigenfunctions are assumed to be orthogonal. Expanding
eigenfunctions of the new matrix M into a series of
eigenfunctions of matrix G, ΨjðαÞ ¼

P
N
γ¼1 CαγΦjðγÞ, and

substituting this expansion into Eq. (6), one gets the relation

Cαγ ¼ Z
Ψ1ðαÞΦ�

1ðγÞ
Eα − eγ

ð7Þ

and the consistency (quantization) conditions

Z
X
γ

jΦ1ðγÞj2
Eα − eγ

¼ 1; Z
X
γ

jΨ1ðγÞj2
Eγ − eα

¼ 1: ð8Þ

It is plain that eigenvalues Eα and eα are interlacing. More
precisely, if feαg are ordered (i.e., e1 ≤ e2 ≤ � � � ≤ eN), then
ei ≤ Ei ≤ eiþ1 (i ¼ 1;…; N − 1), eN ≤ EN for all Z > 0,
and E1 ≤ e1, ei−1 ≤ Ei ≤ ei (i ¼ 2;…; N) for all Z < 0.
Equation (8) can be solved for the numerators. Using the

Cauchy determinant formula one concludes that

ZjΦ1ðαÞj2 ¼
Q

γðEγ − eαÞQ
γ≠αðeγ − eαÞ

; ð9Þ

ZjΨ1ðαÞj2 ¼
Q

γðEα − eγÞQ
γ≠αðEα − EγÞ

: ð10Þ

With such values matrix Eq. (7) is automatically unitary,
CC† ¼ 1. Many other relations can be derived for the above
coefficients. In particular,

Z
X
α

jΦ1ðαÞj2 ¼ Z
X
α

jΨ1ðαÞj2 ¼
X
α

ðEα − eαÞ: ð11Þ

By construction eigenvalues eα and eigenfunctions Φ1ðαÞ
of matrix Gβ are distributed as in standard random matrix
ensembles [5]:

Pðfeαg; frαgÞ ∼
Y
α<γ

jeγ − eαjβ
Y
α

rβ=2−1α δ

�X
α

rα − 1

�
exp

�
−

β

4σ2
X
α

e2α

�
; rα ¼ jΦ1ðαÞj2: ð12Þ

Using Eq. (9) the joint distribution of the old eigenvalues eα and the new ones Eα without the confinement term was
calculated in Ref. [15]:

Y
α<γ

jeγ − eαjβ
Y
α

rβ=2−1α δ

�X
α

rα − 1

�
∼
Q

γ>αðeγ − eαÞðEα − EγÞQ
γ;αjeγ − Eαj1−β=2

δ

�X
α

ðEα − eαÞ − Z

�
: ð13Þ

Our next step consists of changing N variables eα to N
variables xα ¼ jΨ1ðαÞj2. It is plain that ∂xα=∂eβ ¼
−xα=ðEα − eβÞ. Using the Cauchy determinant it is pos-
sible to calculate explicitly detð∂xα=∂eβÞ and to find that
after a rank-one perturbation the joint distribution of new
eigenvalues and eigenfunctions has the same form as the
distribution of initial quantities [cf. Eq. (13)]

Y
α<γ

jeγ − eαjβ
Y
α

rβ=2−1α δ

�X
α

rα − 1

�Y
α

deαdrα

¼
Y
α<γ

jEγ − Eαjβ
Y
α

xβ=2−1α δ

�X
α

xα − 1

�Y
α

dEαdxα:

It seems that this key identity has been overlooked in
previous studies. The result could be anticipated without
calculations when one notices that Eq. (2) can be written in
the symmetric form Gij ¼ Mij − v�i vj, which interchanges
variables, eα ↔ −Eα, but Eq. (13) is symmetric under this
transformation.
Such symmetry is valid only without the confinement

term. Using the representation Mij ¼
P

αEαΨiðαÞΨ�
jðαÞ

and calculating TrG2 ¼ TrðM − Zδi1δj1Þ2 (or from the
direct calculations as in the Appendix of Ref. [16]), one
concludes that

X
α

e2α ¼
X
α

E2
α − 2Z

X
α

Eαxα þ Z2: ð14Þ
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Consequently, the total joint distribution of new eigenvalues Eα and new eigenvectors, xα ≡ jΨ1ðαÞj2, is the following:

PðfEαg; fxαgÞ ∼
Y
α<γ

jEγ − Eαjβ
Y
α

xβ=2−1α δ

�X
α

xα − 1

�
exp

�
−

β

4σ2

�X
α

E2
α − 2Z

X
α

Eαxα

��
: ð15Þ

For initial distribution Eq. (12) eigenvalues and eigen-
vectors were independent, but after a rank-one perturbation
the distribution of eigenvectors depends on eigenvalues due
to the term

P
αEαxα in the exponent.

Expression (15) is exact. Below, only the most interest-
ing case of large N is considered, though for β ¼ 2 certain
analytical calculations are possible for finite N [17].
Let us assume that when N ≫ 1 all components xα ¼

jΨ1ðαÞj2 are of orderN−1 (below it is demonstrated that it is
valid only for κ2 < 1). Then the condition

P
αxα ¼ 1 can

be taken into account as usual by the introduction of the
Lagrange multiplier δðPαxα − 1Þ → exp½−μðPαxα − 1Þ�.
Now the probability distribution Eq. (15) is factorized and
different xα become independent, each xα ≡ xðEαÞ being
distributed as in Eq. (1) but with l ¼ ð2μ=β − ZE=σ2Þ−1.
The value of μ has to be calculated from the requirement

that
P

αxα ¼ 1. It leads to

X
α

1

E − Eα
¼ Z

σ2
; E ¼ 2μσ2

βZ
: ð16Þ

The sum in this equation for N ≫ 1 can be approximated
by the mean unperturbed Green function G0ðEÞ [18]:

G0ðEÞ ¼
Z

ρWðeÞ
E − e

de ¼ E −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − 4σ2N

p

2σ2
: ð17Þ

After simple algebra, one finds that when κ2 < 1,

μ ¼ βN
κ2 þ 1

2
: ð18Þ

Consequently, the eigenfunction distribution of the perturbed
problem has the same functional form as the PT distribution
Eq. (1), but l [and the mean value of x ¼ NjΨ1ðEÞj2]
depends on the energy and the coupling constant

lðEÞ≡ NhjΨ1ðEÞj2i ¼
�
κ2 þ 1 −

κ

σ
ffiffiffiffi
N

p E

�
−1
: ð19Þ

In the limit κ → 0, lðEÞ → 1, as it should be to recover the
usual PT distribution. But when κ2 > 1, the condition

P
αxα ¼ 1 breaks down [due to the necessity of changing

the branch of the square root in Eq. (17)] and
P

αxα ¼ κ−2.
The reason for such behavior is well known. When κ2 > 1,
one collective state (called an outlier) becomes separated from
the other levels and is situated at Ec ¼ σ

ffiffiffiffi
N

p ðκ þ κ−1Þ. All
states except the collective one have values of xα of orderN−1

and their probability distribution is given by the local
PT distribution Eqs. (1) and (19). The only difference is that
the squaremodulus of the outlier eigenvector component xc ≡
jΨ1ðEcÞj2 is independent of N, xc ¼ 1 − κ−2, so the total
normalization is conserved. The above parameters
of the collective state can be derived by various methods.
For completeness, in Ref. [19] it is demonstrated how they can
be calculated directly from Eq. (15).
The obtained simple Gaussian-like formulas Eqs. (1)

with (19) correspond to the distribution of eigenfunctions in
small energy intervals jδEj ≪ σ

ffiffiffiffi
N

p
. For practical reasons,

it is important to know the distribution of eigenfunctions
xα ¼ NjΨ1ðαÞj2 whose energies Eα are in a finite interval
E1 < Eα < E2. The above results specify that the moments
of the resulting distribution have to be calculated from the
expression

hxqi ¼ cβðqÞ
δN

Z
E2

E1

ρWðEÞ
lqðEÞ dE; δN ¼

Z
E2

E1

ρWðEÞdE;

ð20Þ

where lðEÞ is determined by Eq. (19), ρWðEÞ is the Wigner
spectral density Eq. (4), and cβðqÞ are the Gaussian
moments, c1ðqÞ ¼ 2qΓðqþ 1=2Þ= ffiffiffi

π
p

, c2ðqÞ ¼ Γðqþ 1Þ.
Similarly, the full distribution in an interval ½E1; E2� is

PβðxÞ ¼
1

δN

Z
E2

E1

ρWðEÞe−βx=2lðEÞ
ð2πxÞ1−β=2lβ=2ðEÞ dE: ð21Þ

When all states (except the collective one, if any) are
taken into account, E1 ¼ −2σ

ffiffiffiffi
N

p
and E2 ¼ 2σ

ffiffiffiffi
N

p
.

Straightforward calculations show that in this case

P1ðxÞ ¼
ffiffiffiffiffiffiffi
2

π3x

r Z
π

0

dϕsin2ϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ 1 − 2κ cosϕ

q
e−ðκ2−2κ cosϕþ1Þx=2; P2ðxÞ ¼

I1ð2κxÞ
κx

e−ðκ2þ1Þx: ð22Þ

Here, I1ðxÞ is the modified Bessel function. The
obtained formulas agree well with numerical calcula-
tions [19].

Equation (19) can also be derived by another method
based on the fact that the averaged Green function in the
limit N → ∞ tends to a deterministic expression (see
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Refs. [18,20,21] and references therein). A simple method
to find this expression consists of application of the exact
Schur complement formula [ĜðEÞ≡ ðE −MÞ−1]:

Ĝ11ðEÞ ¼
�
E − Z −

X
j;k≠1M1j

~GjkMk1

�
−1
; ð23Þ

where ~Gjk is the Green function of the ðN − 1Þ × ðN − 1Þ
matrix obtained from matrix M by removing line 1 and
row 1. For matrices distributed as in Eq. (3) one can show
that M1jMk1 !

N→∞
σ2δjk, and this relation takes the form

G11ðEÞ !
N→∞

½E − Z − σ2G0ðEÞ�−1; ð24Þ

where G0ðEÞ can be approximated by Eq. (17). From
eigenfunction expansion of the Green function, it follows
that

hjΨ1ðEÞj2i ≈
ImG11ðE − i0Þ

πρWðEÞ
; ð25Þ

which leads to Eq. (19). The generalization of the last
method to finite-rank interactions is feasible, but due to
possible outlier interaction [21] requires additional inves-
tigation and will be discussed elsewhere.
To sum up, when an ensemble of standard random

matrices with Gaussian distribution Eq. (3) is perturbed by
a rank-one interaction Zδ1iδ1j with real Z, the distribution
of x ¼ NjΨ1ðEÞj2 has the same functional form as the
PT distribution, but parameter l entered Eq. (1) is not a
universal constant but depends on energy E and the
coupling constant κ ¼ Z=ðσ ffiffiffiffi

N
p Þ as in Eq. (19). A similar

result has been obtained in Ref. [9] where energy depen-
dent lðEÞ was associated with the existence of a virtual or
weakly bound state near threshold.
Expression (19) is valid for κ2 < 1 as well as for κ2 > 1.

In the latter case there exists one collective state whose
mean energy is Ec ¼ σ

ffiffiffiffi
N

p ðκ þ κ−1Þ. The modulus square
of the corresponding eigenvector component is not of
the order of N−1 as all the others, but it is independent
of N. More precisely, hjΨ1cj2i ¼ 1 − κ−2. The Gaussian
character of the obtained distributions is valid only for
eigenfunctions in small energy intervals. When all eigen-
functions from a large energy interval are considered their
distribution is not Gaussian but is given by an integral over
Gaussian functions Eq. (21). In the limit N → ∞ all other
components of the eigenfunctions [except Ψ1ðEÞ] remain
distributed according to the usual PT distribution.
The important difference between the calculated distri-

bution and the PT one is that the latter is universal, but the
former is not. The interaction couples eigenfunctions with
eigenenergies and forces the distribution to depend on the
coupling constant, state energy, and the form of confine-
ment potential. For different resonances (e.g., for different

nuclei) these quantities may and will be different. A simple
way to check these ideas experimentally is to fit a width
distribution for a particular resonance in a small energy
window to the PT formula (1) and find the corresponding
lðEÞ from the fit. The absence of a priori restrictions on the
dependence lðEÞ on energy makes this approach quite
flexible to describe various experimental data. Taking into
account together different resonances with different ener-
gies as is often done to increase statistics is not a sensitive
way to investigate this phenomenon.
An interesting feature of the considered model Eq. (2)

is that the introduction of rank-one interaction does
not change local spectral statistics [17,22], as can be
seen from the joint eigenvalue distribution Eq. (15).
Experimentally it was observed that the Δ3 statistics of
nuclear resonances at small distances does agree well with
RM prediction but starts to deviate from it at distances of
the order of 40–70 mean level spacings [7]. Large distance
deviation from RM formulas are typical for dynamical
systems [23] and, in general, is not an argument against
applicability of RM theory.

The author is grateful to D. Savin for pointing out
Ref. [12] and to ICTP, Trieste, for hospitality during the
visit when the Letter was being written.
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[7] P. E. Koehler, F. Bečbář, M. Krtička, K. H. Guber, and J. L.
Ullmann, Neutron resonance data exclude random matrix
theory, Fortschr. Phys. 61, 80 (2013).

[8] P. E. Koehler, Reduced neutron widths in the nuclear data
ensemble: experiment and theory do not agree, Phys. Rev. C
84, 034312 (2011).

[9] H. A. Weidenmüller, Distribution of Partial Neutron Widths
for Nuclei Close to a Maximum of the Neutron Strength
Function, Phys. Rev. Lett. 105, 232501 (2010).

[10] G. L. Celardo, N. Auerbach, F. M. Izrailev, and V. G. Zele-
vinsky, Distribution of Resonance Widths and Dynamics of
Continuum Coupling, Phys. Rev. Lett. 106, 042501 (2011).

[11] Y. V. Fyodorov and D. V. Savin, Resonance width distribu-
tion in RMT: weak-coupling regime beyond Porter-Thomas,
Europhys. Lett., 110, 40006 (2015).

PRL 118, 022501 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

13 JANUARY 2017

022501-4

http://dx.doi.org/10.1103/RevModPhys.81.539
http://dx.doi.org/10.1103/RevModPhys.81.539
http://arXiv.org/abs/1606.03124
http://dx.doi.org/10.1103/PhysRev.104.483
http://dx.doi.org/10.1103/PhysRevLett.105.072502
http://dx.doi.org/10.1103/PhysRevLett.105.072502
http://dx.doi.org/10.1002/prop.201200067
http://dx.doi.org/10.1103/PhysRevC.84.034312
http://dx.doi.org/10.1103/PhysRevC.84.034312
http://dx.doi.org/10.1103/PhysRevLett.105.232501
http://dx.doi.org/10.1103/PhysRevLett.106.042501
http://dx.doi.org/10.1209/0295-5075/110/40006


[12] A. Volya, H. A. Weidenmüller, and V. Zelevinsky, Neutron
Resonance Widths and the Porter-Thomas Distribution,
Phys. Rev. Lett. 115, 052501 (2015).

[13] U. Fano, Effects of configuration on intensities and phase
shifts, Phys. Rev. 124, 1866 (1961).

[14] A. Bohr and B. R. Mottelson, Nuclear Structure
(W.A. Benjamin, New York, 1969), Vol. 1.

[15] I. L. Aleiner and K. A. Matveev, Shifts of random energy
levels by a local perturbation, Phys. Rev. Lett. 80, 814
(1998).

[16] E. Bogomolny, O. Giraud, and C. Schmit, Integrable
Random Matrix Ensembles, Nonlinearity 24, 3179 (2011).

[17] E. Brezin and S. Hikami, Correlations of nearby levels
induced by a random potential, Nucl. Phys. B479, 697
(1996).

[18] L. A. Pastur, On the spectrum of random matrices,
Theor. Math. Phys. 10, 67 (1972).

[19] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.118.022501 for calcu-
lation of outlier parameters and comparison of obtained
formulas with numerics.

[20] E. Brezin and A. Zee, Correlation functions in disordered
systems, Phys. Rev. E 49, 2588 (1994).

[21] A. Knowles and J. Yin, Anisotropic local laws for random
matrices, arXiv:1410.3516.

[22] E. Bogomolny, P. Leboeuf, and C. Schmit, Spectral
Statistics of Chaotic Systems With a Point Like Scatterer,
Phys. Rev. Lett. 85, 2486 (2000).

[23] M. V. Berry, Semiclassical theory of spectral rigidtiy,
Proc. R. Soc. A 400, 229 (1985).

PRL 118, 022501 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

13 JANUARY 2017

022501-5

http://dx.doi.org/10.1103/PhysRevLett.115.052501
http://dx.doi.org/10.1103/PhysRev.124.1866
http://dx.doi.org/10.1103/PhysRevLett.80.814
http://dx.doi.org/10.1103/PhysRevLett.80.814
http://dx.doi.org/10.1088/0951-7715/24/11/010
http://dx.doi.org/10.1016/0550-3213(96)00394-X
http://dx.doi.org/10.1016/0550-3213(96)00394-X
http://dx.doi.org/10.1007/BF01035768
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.022501
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.022501
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.022501
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.022501
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.022501
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.022501
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.022501
http://dx.doi.org/10.1103/PhysRevE.49.2588
http://arXiv.org/abs/1410.3516
http://dx.doi.org/10.1103/PhysRevLett.85.2486
http://dx.doi.org/10.1098/rspa.1985.0078

