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We report a lattice QCD calculation of the hadronic light-by-light contribution to the muon anomalous
magnetic moment at a physical pion mass. The calculation includes the connected diagrams and the
leading, quark-line-disconnected diagrams. We incorporate algorithmic improvements developed in our
previous work. The calculation was performed on the 483 × 96 ensemble generated with a physical pion
mass and a 5.5 fm spatial extent by the RBC and UKQCD Collaborations using the chiral, domain wall
fermion formulation. We find aHLbLμ ¼ 5.35ð1.35Þ × 10−10, where the error is statistical only. The finite-
volume and finite lattice-spacing errors could be quite large and are the subject of ongoing research. The
omitted disconnected graphs, while expected to give a correction of order 10%, also need to be computed.
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Introduction.—The lattice calculation of the hadronic
light-by-light contribution to the muon anomalous magnetic
moment is part of the ongoing effort to better understand the
approximately 3 standard deviation difference between the
extremely accurate BNL E821 experimental result and
the current theoretical calculation with similar accuracy
[1]. The muon anomalous magnetic moment is characterized
by the small dimensionless number aμ ¼ ðgμ − 2Þ=2, the
muon anomaly. Here, the g factor gμ determines themagnetic
moment of muon, ~μ ¼ ~sgμe=2mμ where ~s is the spin angular
momentum of the muon. The muon anomaly can be
determined from the form factor F2 that appears in the
matrix element of the electromagnetic current:

hμð~p0ÞjJνð0Þjμð~pÞi

¼ −eūð~p0Þ
�
F1ðq2Þγν þ i

F2ðq2Þ
4m

½γν; γρ�qρ
�
uð~pÞ; ð1Þ

where aμ ¼ F2ð0Þ. Here, Jνð0Þ is the electromagnetic
current, jμð~pÞi and jμð~p0Þi are the initial and final muon
states, q¼p0−p, and Euclidean-space conventions are
used.
A particle’s anomalous magnetic moment results from its

extended spatial structure. For an elementary Dirac particle,
such as an electron, muon, or tau lepton, with only
electroweak interactions, such a structure will arise from
the electroweak interactions themselves. These effects can
be computed with high precision using perturbation theory,
with the leading term being the well known result of
Schwinger: a ¼ α=2π [2], where α is the fine structure

constant. However, new, high-energy phenomena that
appear at an energy scale Λ can introduce additional
structure, leading to new contributions to al that are
typically suppressed by the ratio ðml=ΛÞ2, where l ¼ e,
μ, or τ and ml is the mass of the corresponding lepton. The
muon anomaly may be the best place to search for such
phenomena since aμ can be more accurately measured than
aτ while mμ is 207 times larger than me.
The current result of the BNL experiment E821 is aexpμ ¼

11 659 208.0ð6.3Þ × 10−10 [3]. More accurate experiments
are planned at Fermilab (E989) [4] and J-PARC (E34) [5],
which aim to reduce the error by a factor of 4. Theoretically,
the contributions to gμ − 2 can be divided into four
categories. The first is the QED contribution, which is
the largest [6]. The second is the electroweak correction,
which is small but not negligible [7]. Both the QED and
electroweak contribution can be computed with perturba-
tion theory and the uncertainties are very small.
The third and fourth contributions enter at second and

third order in α and involve virtual quark loops, introducing
the nonperturbative challenges of QCD. The third is the
hadronic vacuum polarization (HVP) contribution, which
enters at order α2 and corresponds to the left diagram in
Fig. 1. The fourth is the hadronic light by light (HLbL)
contribution, corresponds to the right diagram in Fig. 1 and
enters at order α3.
The HVP contribution is the largest hadronic contribution

and can be computed from a dispersion relation and experi-
mental eþe− annihilation data. This is a well-developed
method with a fractional-percent error. The leading-order
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HVP contribution is 692.3ð4.2Þ × 10−10 [8] or 694.9ð4.3Þ ×
10−10 [9]. This dispersive approach is an active research area
and results with reduced errors should be expected [10]. The
HVP contribution can also be calculated with lattice QCD.
With recently developed methods and increased computa-
tional power, similar or even higher precision results may be
possible [11–15]. In contrast, the HLbL contribution is at
present only estimated by model calculations that give a
result of 10.5ð2.6Þ × 10−10 [16,17] or 11.6ð3.9Þ × 10−10 [1].
This method is difficult to improve further although it is
possible to compare the model result for hadronic light-by-
light scattering with a lattice result for this scattering
amplitude [18]. A dispersion relation analysis of the HLbL
contribution is not available although work is underway in
this direction [19–24].
Combining these results gives the standard model

prediction asmμ ¼ 11659184.0ð5.9Þ×10−10, which differs
from the experimental value above by aexpμ −asmμ ¼
24.0ð6.9Þ×10−10, about twice the estimate for the HLbL
contribution. Thus, a systematically improvable, lattice
determination of the HLbL contribution is needed to
resolve or firmly establish the discrepancy.
The complete set of HLbL diagrams includes the

connected diagrams in Fig. 2 and the disconnected dia-
grams in Figs. 3, 4, and 5. Only quark loops that are directly
connected to photons are drawn in the figures. This is
because only these quark propagators need to be explicitly
calculated on the lattice. The effects of gluons and other
quark loops are included automatically through the evalu-
ation of these explicit quark propagators and the use of an

unquenched gauge ensemble. Although there are many
different types of disconnected diagrams, only one type,
shown in Fig. 3, survives in the SU(3) limit. The other
diagrams, shown in Figs. 4 and 5, vanish in the SU(3) limit
because they contain quark loops that couple only to one
photon and the sum of the charges of the u, d, s quarks is
zero. Also, because the strange quark carries only 1=3 of
the electron charge, diagrams that are suppressed by the
difference between the strange and light quark masses are
suppressed by their charge factors too.
The first attempt using lattice QCD to compute the

connected contribution to HLbL was made by Blum,
Chowdhury, Hayakawa, and Izubuchi [25], which demon-
strated the possibility of performing such a calculation.
A series of improvements in methodology were made in
Ref. [26], eliminating two sources of systematic effects
arising from the use of larger-than-physical electric charge
and nonzero momentum transfer. The methods presented
in Ref. [26] also lead to a substantial reduction in the
statistical noise making a direct lattice calculation with a
physical pion mass possible. Here, we report the result of
the first connected HLbL lattice calculation with a physical
pion mass. In addition to the connected HLbL calculation,
we extended the methods of Ref. [26] and compute the
leading disconnected diagrams shown in Fig. 3 using the
same set of configurations. This is the first disconnected
HLbL calculation and the result suggests that the leading
order disconnected diagrams are quite important.
Computational strategy.—We begin with the equation

for the form factor FcHLbL
2 ð0Þ derived in Ref. [26] for the

moment method:

FIG. 2. Connected hadronic light-by-light diagrams. There are
four additional diagrams resulting from further permutations of
the photon vertices on the muon line.

FIG. 4. Disconnected diagrams of order ms −ml. There are
additional diagrams that can be obtained from permutation of the
photon vertices on the muon line.

FIG. 1. Left: the HVP diagram. Right: the HLbL diagram. The
muon and photon lines are shown explicitly while the quark loops
and exchanged gluons of QCD are represented by the shaded
circles. FIG. 3. Leading-order disconnected diagram, which is nonzero

in the SU(3) limit. There are additional diagrams that can be
obtained from permutation of the photon vertices on themuon line.
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1

2m
FcHLbL
2 ðq2 ¼ 0Þσis0;s ¼

X
r;~z

Z

�
r
2
;−

r
2
; ~z

�

×
X
~xop

1

2
ϵi;j;kð~xopÞjiūs0 ð~0ÞFC

k

×

�
r
2
;−

r
2
; ~z; ~xop

�
usð~0Þ; ð2Þ

where the σis0;s are the conventional Pauli matrices and the
weight function Z is defined by

Zðx;y;zÞ¼

8>>>>>>>><
>>>>>>>>:

3
if jx−yj< jx− zj
and jx−yj< jy− zj;

3=2
if jx−yj ¼ jx− zj< jy− zj
or jx−yj ¼ jy− zj< jx−zj;

1 if jx−yj ¼ jx− zj ¼ jy− zj;
0 otherwise:

ð3Þ

The integration variables in Eq. (2) are related to the
coordinates in Fig. 2 by the following equations: r ¼ x − y,
~z ¼ z − ðxþ yÞ=2, ~xop ¼ xop − ðxþ yÞ=2. We compute
the summation over r in Eq. (2) by stochastically sampling
the points x and y while the sums over ~xop and ~z are
performed exactly over the entire lattice. The weight factor
Z exploits the symmetry of the integrand in Eq. (2) to
ensure that the exactly integrated point z is at least as distant
from both x and y as they are from each other, resulting
in a deterministic treatment of this difficult-to-sample,
long-distance region.
The amplitude FC

ν ðx; y; z; xopÞ is obtained from the
average of the function F νðx; y; z; xopÞ over the three cyclic
permutations of the positions x, y, and z, where

F νðx; y; z; xopÞ

¼ ð−ieÞ6Gρ;σ;κðx; y; z; xsnk; xsrcÞ
X

q¼u;d;s

�
eq
e

�
4

× h−tr½γρSqðx; zÞγκSqðz; yÞγσ
· Sqðy; xopÞγνSqðxop; xÞ�iQCD: ð4Þ

This equation expresses the connected HLbL amplitude
as the average over QCD gauge configurations of the
trace of the product of four quark propagators (Sq)
multiplied by a factor Gρ;σ;κ, constructed from muon and
photon propagators:

Gρ;σ;κðx;y;zÞ¼ emμðtsnk−tsrcÞ

×
X
x0;y0;z0

Gρ;ρ0 ðx;x0ÞGσ;σ0 ðy;y0ÞGκ;κ0 ðz;z0Þ

×

� X
~xsnk;~xsrc

½Sμðxsnk;x0Þγρ0Sμðx0;z0Þγκ0

·Sμðz0;y0Þγσ0Sμðy0;xsrcÞ

þ five permutations of x0;y0;andz0�
�
; ð5Þ

where eu=e ¼ 2=3, ed=e ¼ es=e ¼ −1=3.
We evaluate the muon propagators in Eq. (5) using

an infinite-Ls, domain wall fermion (DWF) on a lattice
assigned the same lattice spacing and with the same lattice
volume as the QCD gauge ensemble. (Here, Ls is the extent
of the fifth dimension for the DWF formalism.) The photon
propagators are evaluated in Feynman gauge and all modes
with vanishing spatial momentum are omitted [27].
Because G involves a zero-mass photon, finite volume
effects are suppressed only by powers of the lattice size.
We also employ the moment method described above

for the disconnected diagrams in Fig. 3 using

1

2m
FdHLbL
2 ðq2 ¼ 0Þσis0;s ¼

X
r;~x

X
~xop

1

2
ϵi;j;kð~xopÞj

· iūs0 ð~0ÞFD
k ð~x;0;r;rþ ~xopÞusð~0Þ:

ð6Þ
The integration variables are related to the coordinates
in Fig. 3 by the equations r ¼ z − y, ~x ¼ x − y, and
~xop ¼ xop − z. As in the connected case, the sum over ~x
and ~xop is performed over all lattice sites but the sum over r
is performed by stochastically sampling the points z and y.
The amplitude FD

ν ðx; y; z; xopÞ is given by

FD
ν ðx; y; z; xopÞ
¼ ð−ieÞ6emμðtsnk−tsrcÞGρ;σ;κðx; y; zÞ
× h½Πν;κðxop; zÞ½Πρ;σðx; yÞ − Πavg

ρ;σ ðx − yÞ�iQCD; ð7Þ

FIG. 5. Disconnected diagrams of order ðms −mlÞ2 and higher.
There are additional diagrams that can be obtained from permu-
tation of the photon vertices on the muon line.
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where

Πρ;σðx; yÞ ¼ −
X
q

ðeq=eÞ2Tr½γρSqðx; yÞγσSqðy; xÞ�: ð8Þ

The subtraction shown inside the square brackets in the
second line of Eq. (7) is performed only as a noise
reduction technique. It does not affect the central
value provided the subtraction term Πavg

ρ;σ ðx − yÞ remains
constant in the ensemble average. This is a consequence
of space-time reflection symmetry: hΠν;κðxop; zÞiQCD ¼
hΠν;κð−xop;−zÞiQCD. As a result, the moment in Eq. (7)
of a single factor of hΠν;κðxop; zÞi vanishes:

X
~xop

1

2
ϵi;j;kð~xopÞjhΠk;κð~xop; 0ÞiQCD

¼
X
~xop

1

2
ϵi;j;kð−~xopÞjhΠk;κð−~xop; 0ÞiQCD ¼ 0: ð9Þ

The ensemble average of theΠ function, hΠρ;σðx; yÞiQCD, is
a good choice for the subtraction term Πavg

ρ;σ ðx − yÞ. In our
calculation, we set Πavg

ρ;σ ðx − yÞ to be the average of the
contractions of 32, uniformly distributed, point-source
propagators, all of which are computed using a single
configuration in our ensemble. That configuration is not
used elsewhere in the calculation.
Note that a similar subtraction would be essential if the

moment method were not being used, in order to avoid
double counting a contribution that is conventionally
included as two hadronic vacuum polarization corrections
to the OðαÞ QED contribution to aμ [28].
Computational details.—The HLbL calculation is

performed on the 483 × 96 physical-pion-mass ensemble
generated by the RBC and UKQCD Collaborations [29].
The calculation is carried out on 65 configurations,
separated by 20 molecular-dynamic time units.
In the connected-diagram calculation, for each configu-

ration, we sample 112 short-distance point pairs with
jrj ≤ 5 in lattice units, and 256 long-distance point pairs
with jrj > 5. The 112 short-distance point pairs cover all
possible values of r up to discrete symmetries on the lattice,
which include reflections and π=2 rotations. In fact, all r
with jrj ≤ 2 are computed twice. For the long-distance
point pairs, the probability of choosing one particular
relative distance r is pðrÞ ∝ expð−0.01jrjÞ=jrj4, an empiri-
cally suggested choice. The first point of all these point
pairs is chosen independently, uniformly distributed over
the lattice. The second point is chosen according to the
distribution in r described above.
In the disconnected-diagram calculation, for each con-

figuration we randomly choose 256 spheres, each of radius
6, and four points are sampled uniformly within each
sphere. Duplication of the points is avoided in the sampling
process. Overall, 1024 points are sampled for each con-
figuration. Half of these points are also used to compute

point-source, strange-quark propagators. All the combina-
tions of these points form ð1024þ 512Þ2 point pairs and
all are used in the calculation. This provides a very large
number of point pairs, sufficient to reduce the statistical
error from the disconnected diagrams down to the level of
the error from the connected diagrams.
The largest computational effort in this calculation is

required to evaluate the light quark propagators, making it
important to use a method that gives results with sufficient
accuracy at a minimum computational cost. This is
achieved here by using the AMA method [30,31] detailed
below. In addition, we use the zMöbius DWF variant [32]
to reduce Ls from the value of 24, used when generating
the ensemble, to Ls ¼ 10, further accelerating the Dirac
inversions. We use three accuracy levels in this AMA
calculation: sloppy, median, and exact.
Most of the light quark propagators are obtained using

sloppy inversions. These are evaluated using the zMöbius
variant of a DWF with Ls ¼ 10, deflated using 2000
eigenvectors obtained from the Lanczos algorithm and
200 single-precision, conjugate gradient iterations. We
extend some of these sloppy inversions with a defect-
correction and deflation step, followed by 200 single-
precision iterations to achieve the median level of accuracy.
Finally, the exact propagators are obtained from the MADWF

algorithm [33], iterated until the results reach a precision of
10−8 (i.e., the norm of the residual is 10−8 times smaller
than the norm of the source).
For the strange quark propagators, no deflation is

performed. The sloppy inversions use the same zMöbius
Dirac operator with the strange quark mass and 300 single-
precision iterations. The median inversions use an additional
defect correction step followed by 300 single-precision
iterations. The exact inversions use the unitary Mobius
Dirac operator and then perform sufficient conjugate gradient
iterations that the propagators reach a 10−8 precision.
In the connected-diagram calculation, only the light quark

contribution is included. (The strange quark contributionwill
be substantially smaller because of both its heavier mass and
an overall charge factor of 1=17.) We compute an additional
12 point pairs with sloppy and median propagators and use
the correlated difference between the sloppy- and median-
precision results to reduce the numerical error to that present
in a median-precision calculation. These 12 point pairs are
sampledwith probabilitypðrÞ∝ expð−0.07jrjÞ=jrj2. Finally,
among these 12 point pairs, four point pairs are computed
with exact propagators and the correlated difference between
the median and exact results is used to reduce the numerical
error to the exact level. The corrections introduced at each
step of this two-step AMA correction are 1% and statistically
consistent with zero.
In the disconnected-diagram calculation, both the light-

and strange-quark contributions are included although the
strange quark contributes less than 5%. We use the same set
of points for the light- and strange-quark AMA corrections.
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From 512 points, 32 points are also computed with median
propagators. Among these 32 points, eight points are also
computed with exact propagators. The correlated sloppy-
median and median-exact differences are used to compute
the correction. By making this correction we replace the
unknown numerical error in the sloppy-precision calcula-
tion with the known statistical error of the correction.
Analysis and results.—Following the procedure

described above we obtain the following results:

acHLbLμ ¼ ð11.60� 0.96Þ × 10−10; ð10Þ
adHLbLμ ¼ð−6.25� 0.80Þ × 10−10; ð11Þ
aHLbLμ ¼ð5.35� 1.35Þ × 10−10; ð12Þ

where the errors shown are statistical only. These results are
obtained from a single gauge ensemble with an inverse
lattice spacing of a−1 ¼ 1.730ð4Þ and a spatial size of
L ¼ 5.476ð12Þ fm.
Because the integration over r is performed as the last

step when evaluating Eqs. (2) and (7) by summing over
the stochastically sampled point pairs, we can study the
contribution to F2 as a function of r as shown in Fig. 6.
From the left plot we can see that most of the connected-
diagram contribution comes from a separation of jrj ≤ 10
in lattice units, while for the disconnected diagrams, the
signal vanishes more slowly and its large-r behavior is
obscured by the noise. The smaller, large-r contribution
seen for the connected diagrams comes partly from our use
of the weight factor Z in Eq. (2) to shift the contribution
toward the short-distance region, a strategy not possible in
the disconnected case.
The disconnected-diagram contribution is quite large

and negative, which may be partly explained by the size of
the π0-pole contributions to the disconnected parts of the
amplitude [34,35].
Conclusion.—We have presented the first lattice calcu-

lation of the connected, hadronic light-by-light contribution
to the muon anomalous magnetic moment at a physical
pion mass and the first lattice calculation of the leading
disconnected hadronic light-by-light contribution, also at a
physical pion mass. We find that the disconnected diagrams

contribute negatively and cancel approximately half of the
connected contribution. While the combined result is much
smaller than that of most model calculations, we expect
large finite-volume and finite-lattice-spacing corrections,
both of which were found to increase the result in our
previous calculations using smaller lattice volumes [26].
Consequently, our lattice QCD result for the hadronic light-
by-light scattering contribution to aμ reported in Eq. (12)
should not be viewed as inconsistent with the result of
model calculations. However, this lattice result is com-
pletely independent from those model calculations, with
unrelated systematic errors. Therefore, the calculation
reported here makes it even more unlikely that the present
discrepancy between the experimental result for aμ and the
prediction of the standard model might be completely
explained by an error in the estimate of the hadronic
light-by-light scattering contribution.
Since the largest finite-volume errors are expected to

arise from the QED part of the calculation, they may be
reduced by performing only the QED part of the calculation
in a larger or possibly infinite volume [36–38]. This is an
extension of the calculation reported here, which should be
practical with current computational resources. The finite-
lattice-spacing errors can be removed by performing the
same calculation on a 643 × 128 lattice with a smaller
lattice spacing [29], which can then be combined with the
present calculation to extrapolate to vanishing lattice
spacing, a calculation that is now underway.
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