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We present for the first time a determination of the energy dependence of the isoscalar ππ elastic
scattering phase shift within a first-principles numerical lattice approach to QCD. Hadronic correlation
functions are computed including all required quark propagation diagrams, and from these the discrete
spectrum of states in the finite volume defined by the lattice boundary is extracted. From the volume
dependence of the spectrum, we obtain the S-wave phase shift up to the KK̄ threshold. Calculations are
performed at two values of the u, d quark mass corresponding to mπ ¼ 236; 391 MeV, and the resulting
amplitudes are described in terms of a σ meson which evolves from a bound state below the ππ threshold at
the heavier quark mass to a broad resonance at the lighter quark mass.
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Introduction.—Meson-meson scattering has long served
as a tool to investigate the fundamental theory of strong
interactions, quantum chromodynamics (QCD). The iso-
scalar channel, where all flavor quantum numbers are equal
to 0, is dominated at low energies by ππ scattering, but
despite experimental data on elastic ππ scattering being in
place for many decades [1], the existence of the lowest-lying
resonance with spin zero, the f0ð500Þ=σ, has only recently
been demonstratedwith certainty [2,3]. The difficulty comes
from the especially short lifetime of the σ, which causes it to
lack the simple narrow “bump” signature associated with
longer-lived resonances. It is the use of dispersive analysis
techniques [4], which build in constraints from the causality
and crossing symmetry of scattering amplitudes, when
applied to the experimental data, which have led to an
unambiguous signal for a σ resonance. These techniques
have ensured that the location of the corresponding pole
singularity, located far into the complex energy plane, can
now be stated with a high level of precision [5,6]. (We point
readers to Refs. [7] for prior efforts to determine the σ pole
using unitarized chiral perturbation theory.)
In principle, it should be possible within QCD to

calculate the scalar, isoscalar ππ scattering amplitude
and the contribution of the σ resonance to it, but the
nonperturbative nature of the theory at low energies leaves
us with limited calculational tools. The most powerful
current approach is lattice QCD, in which the quark and
gluon fields are discretized on a space-time grid of finite
size, allowing numerical computation by averaging over
large numbers of possible field configurations generated
by Monte Carlo sampling. In particular, from the time
dependence of correlation functions calculated in this way,

we can extract a discrete spectrum of states whose
dependence on the volume of the lattice can be related
to meson-meson scattering amplitudes [8,9].
Calculations of the scalar, isoscalar channel have long

been considered to be among the most challenging appli-
cations of lattice QCD. In order to be successful here, it is
necessary to evaluate all quark propagation diagrams
contributing to the correlation functions, to reliably extract
a large number of states in the spectrum, and to determine
and interpret the energy dependence of the scattering
amplitude in the elastic region. To date, no calculation
has overcome all these challenges [10].
In this Letter, we show that by combining a number of

novel techniques whose application we have pioneered
over the past few years, we can meet all these challenges
and provide the first determinations of the scalar, isoscalar
scattering amplitude within QCD. By utilizing distillation
[11], we are able to evaluate with good statistical precision
all required quark propagation diagrams, including those
which feature quark-antiquark annihilation. By diagonal-
izing matrices of correlation functions [12] using a large
basis of composite QCD operators with relevant quantum
numbers [13–19], we are able to make robust determina-
tions of spectra, and by considering multiple lattice
volumes and moving frames, we are able to map out the
energy dependence of the ππ scattering amplitude over the
entire elastic region. (We point the reader to Refs. [20] for
parallel efforts in the study of elastic resonant amplitudes
using similar techniques.)
We perform our calculations with two different values of

the degenerate u, d quark mass, corresponding to pions
with masses of approximately 236 and 391 MeV [21,22].
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We find that for the lighter mass, the scattering amplitude
is compatible with featuring a σ appearing as a broad
resonance, which closely resembles the experimental sit-
uation. As the quark mass is increased, we find that the σ
evolves into a stable bound state lying below the ππ
threshold.
Correlation functions and the finite-volume spectrum.—

The discrete spectrum of hadronic eigenstates of QCD in a
finite volume is extracted from two-point correlation

functions Cabðt; t0; ~PÞ ¼ h0jOaðt; ~PÞO†
bðt0; ~PÞj0i, with spa-

tial momentum ~P ¼ ð2π=LÞ½nx; ny; nz�, where ni ∈ Z in an
L × L × L box. We use a large basis of interpolating fields
Oa from two classes. The first are single-meson-like
operators [13,14,17] which resemble a qq̄ construction
of definite momentum ðψ̄ΓψÞ~P, where Γ are operators
acting in spin, color, and position space [11]. Both uūþ dd̄
and ss̄ flavor constructions are included [16,23]. The
second class of operators are those resembling a pair of
pions ππ with definite relative and total momentumP

p̂1;p̂2
w~p1;~p2;~P

ðψ̄Γ1ψÞ~p1
ðψ̄Γ2ψÞ~p2

[18], projected into

isospin ¼ 0. Each isovector pionlike operator is con-
structed as the particular linear superposition, in a large
basis of single-meson operators, that maximally overlaps
with the pseudoscalar ground state [17,18].
We compute matrices of correlation functions

Cabðt; t0; ~PÞ using multiple single-meson operators along

with several relative momentum constructions ~p1 þ ~p2 ¼ ~P
of the ππ-like operators. (We also include several KK̄-like
operators, of analogous construction to the ππ operators,
although they are not vital in the determination of the
spectrum below the KK̄ threshold.) This kind of operator
basis has been used successfully in the determination of
scattering amplitudes in the ππ I ¼ 1 channel [19,22] and
the coupled-channel ðπK; ηKÞ [24] and ðπη; KK̄Þ [25] cases.
After integration over the quark fields appearing in the

path-integral representation of Cabðt; t0; ~PÞ, we find that a
variety of topologies of quark propagation diagrams appear,
shown schematically in Fig. 1. Correlators with ππ-like
operators at t and t0, for instance, require both connected
pieces ðaÞ; ðbÞ and partially (c) and completely (d)

disconnected pieces which feature quark propagation
from a time t to the same time t. Computation of these
propagation objects has historically been a major challenge
for lattice QCD. Within the distillation approach we utilize,
determining these objects becomes manageable, and by
obtaining them for all time slices t, good signals can be
garnered by averaging correlation functions for fixed time
separations over the whole temporal extent of the lattice.
The factorization of operator construction, inherent in
distillation, allows for the reuse of these propagation
objects, and those used here have been previously com-
puted and used in other projects that featured quark
annihilation [19,22–27].
In Fig. 2, we show the contributions of the various

diagrams to an example correlation function having an
operator π½000�π½110� at both t0 ¼ 0 and t, where we observe
that all diagrams are evaluated with good statistical
precision. In general, delicate cancellations between differ-
ent contributing diagrams can be present in isoscalar
correlation functions, and our approach is seen to be
capable of accurately capturing these.
We computed correlation matrices for total momentum

~P ¼ ½000�, [100], [110], [111], and [200], extracting multi-
ple states in the spectrum of each using variational analysis
of the type described in Ref. [14]. Details of the dynamical
lattices, which include degenerate light u, d quarks and a
heavier s quark, and which have spatial lattice spacing
as ∼ 0.12 fm, can be found in Refs. [21,22]. For the
391 MeV pion case, we computed with three lattice
volumes, 163, 203, and 243, while for the 236 MeV pion

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 1. Schematic quark propagation diagrams which contrib-
ute to the isoscalar correlation functions required in this Letter.
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FIG. 2. Contributions of various diagrams [falling into the
categories (a)–(d) presented in Fig. 1—two different variants each
of (a) and (c) appear] to the correlation function having an
operator π½000�π½110� at both t0 ¼ 0 and t. The time dependence is
weighted by eE0t with E0 the energy of the lightest state with
~P ¼ ½110�. The complete correlation function, which corresponds
to the sum of the pieces shown, is shown by the black squares.
Computation on a 323 × 256 lattice with mπ ¼ 236 MeV.
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case we used a single larger 323 volume. The extracted
spectra are shown in Fig. 3. In this first study, wewill restrict
our attention to energies below theKK̄ threshold fromwhich
we can determine the ππ elastic scattering phase shift.
Scattering amplitudes and the σ pole.—Under the well-

justified approximation of neglecting kinematically sup-
pressed higher partial waves, the L × L × L finite-volume
spectrum is related to the S-wave ππ elastic scattering phase
shift by

cot δ0ðEcmÞ þ cotϕðP;LÞ ¼ 0; ð1Þ

where ϕðP;LÞ is a known function which differs according
to ~P [8]. This provides a one-to-one mapping between the
discrete finite-volume energies determined in lattice QCD
and the infinite-volume scattering phase shift evaluated at
those energies. (This equation is exact up to corrections due
to the mixing with l ≥ 2 amplitudes due to the reduction of

rotational symmetry [8]. We have addressed these effects
for other systems in previous studies [18,19,22,24,25] and
in this case find their contribution to be negligible.)
In Fig. 4, we present the phase shifts determined from the

spectra shown in Fig. 3. A simple-minded approach to
parametrizing the energy dependence of these scattering
amplitudes neglects the explicit contribution of any left-
hand cut—which is present due to crossing symmetry, but
which is distant from the physical scattering region for
heavy pions—leaving significant freedom in choice of
functional form. We find that we can obtain good descrip-
tions of the lattice spectra for many unitarity-preserving
choices of parametrization—Fig. 4 shows one illustrative
example, which uses a single-channel K matrix featuring a
pole term plus a constant, and a Chew-Mandelstam phase
space (see Ref. [24] and references therein), the corre-
sponding description of the finite-volume spectrum being
shown in orange in Fig. 3. In previous studies [19,22,24,25]
of amplitudes featuring narrow resonances, we observed
very little variation in the pole position of the resonance
with parametrization choice variation.
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FIG. 3. Center-of-momentum frame energies (black and gray
points) extracted from variational analysis of correlation matrices

at five values of ~P plotted versus L. Upper panel shows spectra
for mπ ¼ 391 MeV and the lower panel for mπ ¼ 236 MeV. The
vacuum contribution to [000] correlation functions, which is time

independent, and thermal contributions for other ~P are removed
using the technique described in Ref. [18]. Red curves indicate
noninteracting ππ energies. Small dashed red and green hori-
zontal lines show the ππ and KK̄ thresholds. Orange points show
the finite-volume spectrum obtained from the K-matrix pole-
plus-constant parametrization mentioned in the text.
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FIG. 4. Upper panel: S-wave ππ elastic scattering phase shift δ0
plotted against the scattering momentum p2 ¼ ðEcm=2Þ2 −m2

π .
Lower panel: Same data presented as p cot δ0 (some points with
large uncertainty have not been plotted). The colored curves
are the result of a K-matrix pole-plus-constant with Chew-
Mandelstam phase-space parametrization. The gray points show
experimental data [1], and the gray curve shows the constrained
dispersive description of these data presented in Ref. [3].
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In the 391 MeV pion case, we find that all parametriza-
tions which successfully describe the finite-volume spectra
have a pole on the real energy axis below ππ threshold on
the physical Riemann sheet, which we interpret as the σ
appearing as a bound state of mass 758(4) MeV.
Considering the amplitude determined with 236 MeV
pions, we observe in Fig. 4 a qualitative change of behavior
in the phase-shift curve to a form which does not resemble
either that expected for a bound state or that of a narrow
elastic resonance. We find that all successful descriptions of
the spectrum have a pole on the second Riemann sheet with
a large imaginary part, which we interpret as the σ
appearing as a broad resonance. Because the amplitude,
determined from the finite-volume spectrum, is only con-
strained on the real energy axis, which is far from the pole
position, there is a significant variation in the precise
determination of the location of the pole under reasonable
variations of the parametrization form. Details of these
forms can be found in Refs. [25] and in the Supplemental
Material [28]. Given the important phenomenological role
of the Adler zero, we consider some parametrizations that
include it. The phenomenon of significant pole position
variation has been previously observed when experimental
ππ phase-shift data are used to fix parameters in amplitude
models that do not build in dispersive constraints [5].
Figure 5 shows the complex energy plane illustrating the

extracted pole position s0 ¼ ½Eσ − ði=2ÞΓσ�2 for a range of
parametrization choices. We also show the coupling jgσππj
extracted from the residue of the t matrix at the pole
g2σππ ¼ lims→s0ðs0 − sÞtðsÞ.
Summary and outlook.—In this Letter, we have, for the

first time, determined the low-lying spectra of the scalar-
isoscalar channel of QCD in a box, including all required
quark propagation diagrams. From the finite-volume spec-
tra, we have extracted the ππ elastic scattering amplitude
which shows qualitatively different behavior at the two pion
masses considered, 236 and 391MeV, with the heavier mass
featuring a σ appearing as a stable bound state.
The amplitude parametrizations we explored to describe

the finite-volume spectrum determined with 236MeV pions
all feature a σ appearing as a broad resonance, but the pole
position is not precisely determined, showing variation with
parametrization choice. We believe that this comes about
because our parametrizations, while maintaining elastic
unitarity, do not necessarily respect the analytical constraints
placed on them by causality and crossing symmetry. In the
future, we plan to adapt dispersive approaches so that they
are applicable to describing the lattice data, and we expect
this will allow us to pin down the σ pole position with
precision directly from QCD.
With constrained amplitude forms in hand, it will

become appropriate to perform calculations with lighter
u, d quarks, such that we move closer to the physical pion
mass, in order to make direct comparison with the
experimental situation. It will also be useful to examine

pion masses between the 236 and 391MeV considered here
to determine how the transition we have observed from
bound state to resonance is manifested—a suggestion from
unitarized chiral perturbation theory [30] has the coupling
gσππ , which one might conclude from Fig. 5 is approx-
imately independent of quark mass, having a divergent
behavior somewhere near mπ ∼ 300 MeV.
Our calculational techniques allow us to determine

finite-volume spectra above the KK̄ threshold, and by
considering such energies within a coupled-channel analy-
sis, we expect to be able to study any f0ð980Þ-like
resonance that may appear. Such a state is anticipated as
an isospin partner of the a0 resonance which we observed
near the KK̄ threshold in a recent 391 MeV pion mass
calculation [25]. A comprehensive study of the light scalar
meson nonet (σ, κ, a0, f0) within first-principles QCD will
then be possible. The finite-volume approach can also be
extended to study the coupling of these states to external
currents [26,27,31–36]—by examining the current virtuality
dependence of the form factors evaluated at the resonance
pole, we expect to be able to infer details of the constituent
structure of the scalar mesons.
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We also thank Kate Clark for use of the QUDA codes.
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FIG. 5. Upper panel: t-matrix pole positions for a variety of
parametrizations: K-matrix pole-plus-polynomial forms (1a)–
(1c) with and (2) without Chew-Mandelstam phase space and/
or (3a),(3b) Adler zero [29], (4) relativistic Breit-Wigner, and
(5) effective range expansion. See the Supplemental Material for
a full description [28]. Green points: bound-state pole (physical
sheet) at mπ ¼ 391 MeV. Red points: resonant pole (unphysical
sheet) at mπ ¼ 236 MeV. Black point: Resonant pole from
dispersive analysis of experimental data (conservative average
presented in Ref. [5]). Lower panel: Coupling gσππ from t-matrix
residue at the pole—points from various parametrizations are
shifted horizontally for clarity.
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