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The η → 3π amplitude is sensitive to the quark mass difference mu −md and offers a unique way to
determine the quark mass ratioQ2 ≡ ðm2

s −m2
udÞ=ðm2

d −m2
uÞ from experiment. We calculate the amplitude

dispersively and fit the KLOE Collaboration data on the charged mode, varying the subtraction constants in
the range allowed by chiral perturbation theory. The parameter-free predictions obtained for the neutral
Dalitz plot and the neutral-to-charged branching ratio are in excellent agreement with experiment. Our
representation of the transition amplitude implies Q ¼ 22.0� 0.7.
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The decay η → 3π is forbidden by isospin symmetry.
Sutherland [1] showed that electromagnetic effects are
only subdominant with respect to the contribution coming
from the up and down quark mass difference mu −md. A
measurement of this decay can therefore be used as a
sensitive probe of the size of isospin breaking in the QCD
part of the standard model Lagrangian.
Chiral perturbation theory (χPT) offers a systematic

method for the analysis of strong interaction processes at
low energy. The chiral representation of the transition
amplitude is known up to and including next-to-next-to-
leading order (NNLO) [2–4], but the expansion converges
only very slowly. The reason is well understood and has to
do with rescattering effects in the final state [5,6]. As shown
in Refs. [7–9], these effects can reliably be calculated with
dispersion relations. In the meantime, the ππ phase shifts
have been determined to remarkable precision [10–12] and
the quality of the experimental information about η → 3π is
now much better. This has triggered renewed interest in
theoretical studies of this decay [13–19].
The aim of this Letter is to improve earlier dispersive

treatments and to show that this leads to a good under-
standing of these decays, in particular also to a better
determination of Q. Our analysis is based on three
assumptions.
(1) The dominant contribution to the transition amplitude

is proportional to mu −md with an isospin symmetric
proportionality factor. We denote the dispersive represen-
tation of this contribution by Adispðs; t; uÞ and normalize it
to the mass difference between the charged and neutral
kaons:

Adispðs; t; uÞ ¼ −ðM2
K0 −M2

KþÞQCDMðs; t; uÞ: ð1Þ

The function Mðs; t; uÞ concerns the isospin limit of QCD.
We assume that the remainder, which contains contribu-
tions due to the electromagnetic interaction as well as terms
of higher order in the isospin breaking parameter mu −md,
can be accounted for with the one-loop representation
of Ref. [20].
(2) In the discontinuities of the amplitude, the D and

higher waves are strongly suppressed at low energies—in
the chiral expansion, they contribute only beyond NNLO.
Neglecting these contributions, the amplitude Mðs; t; uÞ
can be decomposed into three functions of a single variable:

Mðs; t; uÞ ¼ M0ðsÞ þ ðs − uÞM1ðtÞ þ ðs − tÞM1ðuÞ

þM2ðtÞ þM2ðuÞ −
2

3
M2ðsÞ: ð2Þ

The three functions represent the s-channel isospin com-
ponents of the amplitude (I ¼ 0, 1, 2). We expect Eq. (2) to
constitute an excellent approximation to the exact ampli-
tude in the physical region of the decay. In this approxi-
mation, causality and unitarity lead to a set of dispersion
relations, which determine the three functions MIðsÞ, in
terms of the S- and P-wave phase shifts of ππ scattering up
to a set of subtraction constants.
As is well known, the decomposition in Eq. (2) is unique

only up to polynomials. In particular, one may add an
arbitrary cubic polynomial to M2ðsÞ; the amplitude
Mðs; t; uÞ stays the same provided suitable cubic [quad-
ratic] polynomials are added to M0ðsÞ [M1ðsÞ]. Moreover,
even ifM2ðsÞ is kept fixed, an ambiguity remains: adding a
constant to M1ðsÞ leaves Mðs; t; uÞ unchanged, provided
M0ðsÞ is amended with a suitable term linear in s. This then
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exhausts the degrees of freedom: the decomposition is
unique up to a five-parameter family of polynomials.
(3) We fix the number of subtractions by imposing a

condition on the asymptotic behavior: the function
Mðs; t; uÞ is not allowed to grow more rapidly than
quadratically when the Mandelstam variables s, t, u
become large (notice that only two of the three variables
are independent, sþ tþ u ¼ M2

η þ 3M2
π).

As demonstrated in Ref. [8], the functions MIðsÞ only
have a right-hand cut, with a discontinuity given by

disc MIðsÞ ¼ ½MIðsÞ þ M̂IðsÞ� sin δIðsÞe−iδIðsÞ; ð3Þ

where δIðsÞ is the phase of the lowest ππ partial wave of
isospin I. While the first term on the right-hand side arises
from collisions in the s channel, the second is generated by
two-particle interactions in the t and u channels and
involves angular averages: a detailed expression can be
found in Ref. [8].
It is advantageous to write dispersion relations not for the

functions MIðsÞ but for mIðsÞ ¼ MIðsÞ=ΩIðsÞ, where
ΩIðsÞ is the Omnès factor belonging to δIðsÞ:

ΩIðsÞ ¼ exp

�
s
π

Z
∞

4M2
π

ds0
δIðs0Þ

s0ðs0 − s − iεÞ
�
;

I ¼ 0; 1; 2: ð4Þ

This removes the first term on the right-hand side of
Eq. (3): if the t- and u-channel discontinuities are dropped,
disc mIðsÞ vanishes, so thatmIðsÞ represents a polynomial.
More importantly, while the dispersion relations for MIðsÞ
admit nontrivial solutions even if the subtraction constants
are set equal to zero, this does not happen with the
dispersion relations for mIðsÞ—in that case, the solution
is uniquely determined by the subtraction constants.
The only difference between the system of integral

equations that follows from the above assumptions and
the one studied in Ref. [8] is that we are imposing a weaker
asymptotic condition, that is, introduce additional subtrac-
tion constants. The condition (3) fixes the amplitude up to
11 subtraction constants. In view of the polynomial
ambiguities, 5 of these drop out in the sum, but the
remaining 6 are of physical interest. Denoting these by
α0, β0, γ0, δ0, β1, and γ1 (δ0 and γ1 are new compared to the
analysis in Ref. [8]), the integral equations take the form

M0ðsÞ ¼ Ω0ðsÞfα0 þ β0sþ γ0s2 þ δ0s3 þD0ðsÞg;
M1ðsÞ ¼ Ω1ðsÞfβ1sþ γ1s2 þD1ðsÞg;
M2ðsÞ ¼ Ω2ðsÞD2ðsÞ: ð5Þ

with

DIðsÞ ¼
snI

π

Z
∞

4M2
π

ds0

s0nI
sin δIðs0ÞM̂Iðs0Þ

jΩIðs0Þjðs0 − s − iϵÞ ; ð6Þ

where n0 ¼ n2 ¼ n1 þ 1 ¼ 2.
As we are using many subtractions, the contributions

arising from the high-energy part of the integrals in Eq. (6)
are not important. We could have made two additional
subtractions in the definition of the functions DIðsÞ, so that
their Taylor expansion in powers of s would only start at
Oðs4Þ for I ¼ 0, 2 and at Oðs3Þ for I ¼ 1—this would
merely change the significance of the subtraction constants.
The form chosen simplifies the comparison with earlier
work. For the same reason, the behavior of the phase shifts
at high energies is irrelevant. We guide the phases to a
multiple of π at

ffiffiffi
s

p ¼ 1.7 GeV. Since the integrands in
Eq. (6) are proportional to sinðδIÞ, this implies that the
integrals only extend over a finite range—with the number
of subtractions we are using, convergence is not an issue.
If the subtraction constants as well as the phase shifts are

given, the integral equations impose a linear set of con-
straints on the functions MIðsÞ. Since the corresponding
homogeneous system, obtained by setting the subtraction
constants equal to zero, does not admit a nontrivial
solution, the amplitude is determined uniquely: the general
solution of our equations represents a linear combination
of the 3 × 6 basis functions Mα0

I ðsÞ;Mβ0
I ðsÞ;…;Mγ1

I ðsÞ,
I ¼ 0, 1, 2:

MIðsÞ ¼ α0M
α0
I ðsÞ þ β0M

β0
I ðsÞ þ � � � þ γ1M

γ1
I ðsÞ: ð7Þ

The basis functions can be determined iteratively—the
iteration converges in a few steps.
While the effects due to ðmu −mdÞ2 are tiny, those from

the electromagnetic interaction are not negligible. In
particular, the electromagnetic self-energy of the charged
pion generates a mass difference to the neutral pion which
affects the phase space integrals quite significantly. We
estimate the isospin breaking effects with χPT, comparing
the one-loop representation of the transition amplitude in
Ref. [20] (denoted byMDKM) with the isospin limit thereof,
i.e., with the amplitude MGL of Ref. [3]. For this purpose,
we construct a purely kinematic map that takes the
boundary of the isospin symmetric phase space into the
boundary of the physical phase space for the charged mode.
Applied to MGL, this map yields an amplitude ~MGL that
lives on the physical phase space and has the branch points
of the two-pion cuts at the proper place. The ratio K ≡
MDKM= ~MGL is approximately constant over the entire
Dalitz plot: in the charged decay mode, this ratio only
varies in the range 1.031 < jKj2 < 1.078. In the neutral
channel, the branch cuts from the transition π0π0 →
πþπ− → π0π0 run through the physical region. Our method
accounts for these only to NLO, via the factor K, but the
narrow range 0.972 < jKj2 < 0.978 shows that their
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contributions are numerically very small. In both decay
modes, the normalized Dalitz plot distribution of ~MGL is
remarkably close to the one of the full one-loop
representation.
In this sense, the distortion of phase space generated by

the self-energy of the charged pion dominates the isospin-
breaking effects in the Dalitz plot distribution. We denote
the amplitude obtained from our isospin symmetric dis-
persive representation Adisp with the map introduced above

by ~A and approximate the physical amplitude with
Aphys ¼ K ~A. As discussed below, the prediction obtained
for the branching ratio of the two modes provides a
stringent test of this approximate formula: the factor
jKj2 barely affects the Dalitz plot distribution because it
is nearly constant, but it differs from unity and therefore
affects the rate. Details will be given in Ref. [21].
The experimental results on the Dalitz plot distribution

do not suffice to determine all subtraction constants. In
particular, the overall normalization of the amplitude is not
constrained by these. We use the one-loop representation of
χPT to constrain the admissible range of the subtraction
constants. To do this we consider the Taylor coefficients of
the functions M0ðsÞ, M1ðsÞ, and M2ðsÞ:

MIðsÞ ¼ AI þ BIsþ CIs2 þDIs3 þ…: ð8Þ

These coefficients also depend on the choice made in the
decomposition in Eq. (2) of the one-loop representation,
but the combinations

H0 ¼ A0 þ
4

3
A2 þ s0

�
B0 þ

4

3
B2

�
;

H1 ¼ A1 þ
1

9
ð3B0 − 5B2Þ − 3C2s0;

H2 ¼ C0 þ
4

3
C2; H3 ¼ B1 þ C2;

H4 ¼ D0 þ
4

3
D2; H5 ¼ C1 − 3D2 ð9Þ

are independent thereof (s0 defines the center of the Dalitz
plot: s0 ¼ 1

3
M2

η þM2
π). We use the constant H0 to para-

metrize the normalization of the amplitude and describe the
relative size of the subtraction constants by means of the
variables hI ¼ HI=H0. Specifying the 6 threshold coeffi-
cients H0; h1;…; h5 is equivalent to specifying the 6
subtraction constants α0, β0, …, γ1.
At leading order of the chiral expansion, only HLO

0 ¼ 1

and hLO1 ¼ 1=ðM2
η −M2

πÞ ¼ 3.56 are different from zero
(throughout, dimensionful quantities are given in GeV
units). The NLO representation yields corrections for these
two coefficients as well as the leading terms in the chiral
expansion of h2 and h3. The one-loop formulas can be
expressed in terms of the masses, the decay constants Fπ ,
FK , and the low-energy constantL3, which only contributes

to H3. We are using the recently improved determination
L3 ¼ −2.63ð46Þ × 10−3 of Ref. [22], so that the one-loop
representation does not contain any unknowns.
Experiencewith χPT indicates that, unless the quantity of

interest contains strong infrared singularities, subsequent
terms in the chiral perturbation series based on SUð3Þ ×
SUð3Þ are smaller by a factor of 20%–30%. The values
HNLO

0 ¼ 1.176, hNLO1 ¼ 4.52 confirm this rule: while in the
case of H0, the correction is below 20%, the one in h1 is
relatively large (27%), because this quantity does contain a
strong infrared singularity: h1 diverges in the limitMπ → 0,
in proportion to 1=M2

π . In fact, the singular contribution fully
dominates the correction. We conclude that it is meaningful
to truncate the chiral expansion of the Taylor coefficients at
NLO. The invariant X is approximated with the one-loop
result XNLO, and the uncertainties from the omitted higher
orders are estimated at 0.3jXNLO − XLOj. This is on the
conservative side of the rule mentioned above and yields a
theoretical estimate for four of the six coefficients:
H0 ¼ 1.176ð53Þ, h1 ¼ 4.52ð29Þ, h2 ¼ 16.4ð4.9Þ, h3 ¼
6.3ð1.9Þ (the estimate used for h3, in particular, also covers
the comparatively small uncertainty in the value of L3). The
remaining two are beyond the reach of the one-loop
representation—we treat h4 and h5 as free parameters.
The observed Dalitz plot distribution offers a good check

of these estimates: dropping the subtraction constants δ0, γ1
and ignoring χPT altogether, we obtain a three-parameter
fit to the KLOE Dalitz plot with χ2expt ¼ 385 for 371 data
points. For all three coefficients h1, h2, h3, the fit yields a
value in the range estimated above on the basis of χPT.
Moreover, along the line s ¼ u, the resulting representation
for the real part of the amplitude exhibits a zero at
sfitA ¼ 1.43M2

π: the observed Dalitz plot distribution implies
the presence of an Adler zero, as required by a venerable
SUð2Þ × SUð2Þ low-energy theorem [23] (at leading order
of the chiral expansion, the zero sits at sLOA ¼ 4

3
M2

π).
The three assumptions formulated above do not imply

that the subtraction constants are real. In fact, beyond NLO
of the chiral expansion, the subtraction constants get an
imaginary part which can be estimated with the explicit
expressions obtained from the two-loop representation:
they do not contain any unknown low-energy constants,
and none of the Oðp6Þ ones. For simplicity, we take
α0; β0;…; γ1 to be real. The small changes occurring if
the imaginary parts of the subtraction constants are instead
taken from the two-loop representation barely affect our
results.
In our analysis, the recent KLOE data [24] play the

central role. In this experiment, the Dalitz plot distribution
of the decay η → πþπ−π0 is determined to high accuracy,
bin by bin. In the following we restrict ourselves to an
analysis of these data. The results of earlier experiments
[25–27] can readily be included but do not have a
significant effect on our results [21].
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We minimize the sum of two discrepancy functions:
while χ2expt measures the difference between the calculated
and measured Dalitz plot distributions at the 371 data
points of KLOE [24], χ2th represents the sum of the square
of the differences between the values of h1, h2, and h3 used
in the fit and the central theoretical estimates, divided by
the uncertainties attached to these. The minimum χ2 ¼
χ2expt þ χ2th we obtain for the 371 data points is equal to
χ2expt ¼ 380.2, at the parameter values (the subtraction
constants are univocally fixed by these):

Reh1 ¼ 4.49ð14Þ; Reh2 ¼ 21.2ð4.3Þ; Reh3 ¼ 7.1ð1.7Þ;
Reh4 ¼ 76.4ð3.4Þ; Reh5 ¼ 47.3ð5.8Þ: ð10Þ

The quoted errors are based on the Gaussian approxima-
tion. The noise in the input used for the phase shifts
generates an additional contribution. To estimate it, we
have varied the Roy solutions of Ref. [10], not only below
800 MeV where the uncertainties are small, but also at
higher energies where dispersion theory does not provide
strong constraints. The resulting fluctuations in the Taylor
invariants are small compared to the Gaussian errors
obtained with the central input for the phase shifts—the
errors quoted in Eq. (10) include these uncertainties.
Our dispersive representation passes a crucial test: the

real part of the transition amplitude does have a zero,
remarkably close to the place where it was predicted on the
basis of current algebra: sA ¼ 1.34ð10ÞM2

π. The theoretical
constraints play a significant role here: if χ2th is dropped, the
quality of the fit naturally improves (the discrepancy with
the KLOE data drops from 380 to 370), but outside the
physical region, the parametrization then goes astray. In
particular, the Adler zero gets lost: with 5 free parameters in
the representation of the Dalitz plot distribution, the data do
not provide enough information to control the extrapolation
to the Adler zero.
The solution Eq. (10) yields a parameter-free prediction

for the Dalitz plot of the neutral channel. Figure 1 shows
that the resulting Z distribution is in excellent agreement
with the MAMI data [28]. Quantitatively, the comparison
yields χ2 ¼ 22.5 for 20 data points (no free parameters).
This solves a long-standing puzzle: χPT predicts the

slope α of the Z distribution to be positive at one loop,
while the measured slope is negative. The problem arises
because α is tiny—estimating the uncertainties inherent in
the one-loop representation with the rule given above, we
find that the error in α is so large that not even the sign can
reliably be determined. The situation does not improve at
NNLO [4]. Only with dispersion theory is one able to reach
the necessary precision and to reliably predict the slope.
At the precision at which the slope is quoted by the

Particle Data Group, αPDG ¼ −0.0315ð15Þ [29], the defi-
nition of α matters because the Z distribution is well
described by the linear formula 1þ 2αZ only at small

values of Z. For the slope at Z ¼ 0, we find
α ¼ −0.0302ð11Þ, while a linear fit on the intervals
0 < Z < 0.5 and 0 < Z < 1 yields the slightly different
values α ¼ −0.0293ð11Þ and α ¼ −0.0313ð11Þ,
respectively.
The decay rates of the processes η → πþπ−π0 and η →

3π0 are given by an integral over the square of the
corresponding amplitudes and, hence, by a quadratic form
in the subtraction constants. For the individual rates, H0 is
also needed—and will be discussed below—but in the
branching ratio B ¼ Γðη → 3π0Þ=Γðη → πþπ−π0Þ the nor-
malization drops out. The uncertainties in the dispersive
representation also cancel almost completely. The error in
our result, B ¼ 1.44ð4Þ, is dominated by the uncertainties
in the one-loop approximation used for isospin breaking. A
comparison with the experimental values given by the
Particle Data Group, B ¼ 1.426ð26Þ (“our fit”), B ¼
1.48ð5Þ (“our average”) shows that the value predicted
for the decay rate of the neutral mode (on the basis of Dalitz
plot distribution and decay rate of the charged mode) agrees
with experiment. This provides a very strong test of the
approximations used to account for isospin breaking.
In contrast to the Dalitz plot distributions and the

branching ratio, the individual rates do depend on the
normalization of the amplitude, which we specify in terms
of ðM2

K0 −M2
KþÞQCD and H0. With the theoretical estimate

for H0 given above, the experimental values of the rates
Γðη→πþπ−π0Þ¼300ð12ÞeV and Γðη→3π0Þ¼428ð17ÞeV
[29] yield two separate determinations of the kaon mass
difference in QCD. Since our prediction for the branching
ratio agrees with experiment, the two results are nearly the
same, but they are statistically independent only with regard
to the uncertainties in the rates, which are responsible for
only a small fraction of the error. Combining the two, we
can determine the mass difference to an accuracy of 6%:

0 0.2 0.4 0.6 0.8 1
Z

0.92

0.94

0.96

0.98

1

MAMI
prediction

FIG. 1. Prediction obtained from the KLOE measurements of
η → πþπ−π0 compared with the MAMI results for η → 3π0

(Z≡ X2 þ Y2 represents the square of the distance from the
center of the Dalitz plot).
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ðM2
K0 −M2

KþÞQCD ¼ 6.27ð38Þ × 10−3 GeV2: ð11Þ

The comparison with the observed mass difference implies
ðM2

K0 −M2
KþÞQED ¼ −2.38ð38Þ × 10−3 GeV2. The corre-

sponding result ϵ ¼ 0.9ð3Þ for the parameter used to
measure the violation of the Dashen theorem [30] agrees
with recent lattice results [31,32], which also indicate that
this theorem picks up large corrections from higher orders.
Indeed, the direct determination of ϵ based on an evaluation
of the kaon mass difference with the electromagnetic
effective Lagrangian encounters unusually strong logarith-
mic infrared singularities, which generate large nonleading
terms in the chiral perturbation series [33]. We emphasize
that our determination of ϵ does not face this problem.
Finally, we invoke the low-energy theorem that relates

the kaon mass difference to the quark mass ratio Q [3]:

ðM2
K0 −M2

KþÞQCD ¼ M2
KðM2

K −M2
πÞ

Q2M2
π

ð12Þ

(MK and Mπ stand for the QCD masses in the limit
mu ¼ md). Since the relation holds up to corrections of
NNLO, our analysis goes through equally well if the
quantity ðM2

K0 −M2
KþÞQCD is replaced by the right-hand

side of Eq. (12). This leads to

Q ¼ 22.0ð7Þ; ð13Þ

in good agreement with the values obtained on the lattice
[30]. Using the remarkably precise result for the ratio
ms=mud ¼ 27.30ð34Þ quoted in Ref. [30], we can finally
also determine the relative size of the two lightest quark
masses: mu=md ¼ 0.44ð3Þ. The theoretical estimates for
H0, h1, h2, h3 and the experimental uncertainties in Dalitz
plot distribution and rate contribute about equally to the
quoted error in this determination of the isospin-breaking
quark mass ratios, while the uncertainties due to the noise
in the ππ phase shifts are negligibly small. We defer a
detailed discussion and a comparison with related work
[4,13–15,17–19] to a forthcoming publication [21].
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