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We derive a selection rule among the (1þ 1)-dimensional SU(2) Wess-Zumino-Witten theories, based
on the global anomaly of the discrete Z2 symmetry found by Gepner and Witten. In the presence of both
the SU(2) and Z2 symmetries, a renormalization-group flow is possible between level-k and level-k0

Wess-Zumino-Witten theories only if k≡ k0 mod 2 . This classifies the Lorentz-invariant, SU(2)-symmetric
critical behavior into two “symmetry-protected” categories corresponding to even and odd levels,
restricting possible gapless critical behavior of translation-invariant quantum spin chains.
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Introduction.—The classification of quantum phases is a
central problem in condensed-matter and statistical physics.
They are first classified into gapped and gapless phases.
There has been significant progress in further classification
of gapped phases, which are relatively easy to be handled
theoretically. In particular, symmetry protected topological
(SPT) phases [1,2] have become an important concept in
the classification. That is, even when two states have no
long-range entanglement and are indistinguishable in terms
of any local observables, they could still belong to distinct
phases separated by a quantum phase transition, in the
presence of a certain symmetry. In contrast, classification
of gapless quantum phases remains very much open.
Symmetries are naturally expected to play an important
role also in the classification of gapless quantum phases.
The issue of classification of quantum phases is also

deeply related to that of quantum field theories. Since a
quantum field theory can be regarded as an effective
description of universal low-energy behaviors of quantum
many-body systems, we may expect that they are essen-
tially the same problem. An intriguing feature of quantum
field theory is the anomaly [3–6]. A particularly interesting
anomaly is the global anomaly, which emerges after
promotion of a global symmetry to gauge symmetry [6].
As it is the case with many connections between quantum
field theory and condensed-matter physics, investigation of
the consequences of the anomaly in quantum field theory in
a condensed-matter physics context has been quite fruitful,
including the discovery of the “Chern insulator” [7].
Nevertheless, the exact correspondence in many concrete
cases is not yet understood.
An anomaly in a field theory may imply that the field

theory cannot be realized in a condensed-matter system or a
lattice model in the same dimensions. A renowned case is
the impossibility of realization of a chiral fermion with
(noninteracting) fermions on a lattice, known as the
Nielsen-Ninomiya theorem [8,9], which is deeply related
to the chiral anomaly, a representative example of the

quantum anomaly. Nevertheless, such a field theory could
be realized at the boundary (edge or surface) of a
condensed-matter system in higher dimensions. For exam-
ple, the chiral fermion in 1þ 1 dimensions indeed appears
as the edge state of a two-dimensional quantum Hall
system. Ryu et al. [10,11] generalized this observation
to classification of gapped SPT phases: the edge or surface
state of a SPT phase exhibits an anomaly with respect to the
relevant symmetry, which implies the “ingappability” of the
edge state in the presence of the symmetry [12].
Conversely, such an anomaly can be identified with an
edge or surface state, and thus with an SPT phase in higher
dimensions.
These developments motivate us to question if there is a

mechanism of symmetry protection of the universality
class of bulk gapless critical phases. In this Letter, we
argue that there is a protection of bulk gapless critical
phases by discrete symmetry. This symmetry protection is
analogous to that of the well-known (gapped) SPT phases;
here we show that the concept can be generalized to
bulk gapless critical phases. We demonstrate this for the
SU(2)-symmetric quantum antiferromagnetic chains and
their effective field theory, SU(2) Wess-Zumino-Witten
(WZW) theory as an example. The SU(2) WZW theory is
characterized by a non-negative integer k, which is called
level. Hereafter we denote the level-k SU(2) WZW theory
as WZWk. WZWk’s with k ¼ 1; 2;… are a complete
classification of the universality classes of critical points
in 1þ 1 dimensions with the Lorentz and SU(2) symmetry
only. We can also identify WZW0 with a gapped phase
with a unique ground state.
Our main claim in the present Letter is as follows: in the

presence of the SU(2) and a certain discrete Z2 symmetry
of the WZW theory, which corresponds to the translation
symmetry of the spin chain, a renormalization-group (RG)
flow is possible between WZWk and WZWk0 only if k≡ k0
mod 2. That is, the gapless critical phases in 1þ 1
dimension with the SU(2), the Z2, and the Lorentz
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symmetries are classified into two “symmetry-protected”
categories: one corresponds to even levels and the other to
odd levels. In terms of spin chains, as long as the SU(2)
spin rotation and the lattice translation symmetries are
unbroken (either explicitly or spontaneously), a spin chain
with S ∈ Z can only realize WZWk with an even k, while
one with S ∈ Zþ 1=2 can only realize WZWk with an
odd k.
Our argument is based on the global anomaly of a

discrete symmetry in the WZW theory originally found by
Gepner and Witten in 1986 [13], providing a new link
between the anomaly in quantum field theory and con-
densed-matter physics. As we will discuss later, the present
result includes, as special cases, the earlier semi-classical
(k → ∞) analysis [14], and the Lieb-Schultz-Mattis theo-
rem [15–17] applied to SU(2)-symmetric one-dimensional
systems. However, the present result is much stronger than
the Lieb-Schultz-Mattis theorem, in restricting the possible
universality class of the gapless critical phase. Furthermore,
we shall discuss an experimental consequence of the
present result, in terms of Raman spectroscopy as an
example.
Model.—The standard Heisenberg antiferromagnetic

(HAFM) chain is defined by the Hamiltonian HHAFM ¼
J1
P

jSj · Sjþ1 with J1 > 0, which possesses the SU(2)
symmetry of the global spin rotation, the lattice translation
symmetry, and the lattice inversion symmetry. We can also
consider various generalizations of this model by including
next-nearest-neighbor interaction [18], biquadratic inter-
action [19], and so on [20,21].
In order to explore the possible quantum critical behavior

of quantum spin chains, non-Abelian bosonization is
useful. In the non-Abelian bosonization of quantum anti-
ferromagnetic chains, first the spin-S spin chain is repre-
sented in terms of fermions with 2S “colors” [14]. The
resulting effective field theory is WZWk defined by the
action

Sk ¼ −
1

λ

Z

S2
dx0dx1Tr½ðg−1∂μgÞðg−1∂μgÞ� þ kΓwz; ð1Þ

with the SU(2) matrix field gðx0; x1Þ with the spin indices,
the coupling constant λ > 0, and the Wess-Zumino term
kΓWZ. We consider the space-(imaginary) time compacti-
fied as the two-dimensional sphere S2. The Wess-Zumino
term ΓWZ is defined on the three-dimensional ball B3,
extended from the spacetime manifold S2. It thus appears to
depend on the extension of g to B3, which is arbitrary.
However, it is a topological term unaffected by any
infinitesimal variation of the extension. Nevertheless,
ΓWZ can take values different by integral multiples of
2π, corresponding to topologically inequivalent extensions.
To define the theory consistently, the partition function
should be independent of the arbitrary extension to B3, and
thus the level k is quantized to be k ∈ Z [22]. WZWk is a

conformal field theory (CFT) with the SU(2) symmetry, for
each level k. Exact features of WZWk are known, thanks to
its infinite dimensional symmetry governed by Kac-Moody
algebra [13,22]. Each value of k represents the different
critical behaviors.
In the non-Abelian bosonization treatment of spin-S

chains [14], the level is naturally given as k ¼ 2S. Indeed,
an integrable model called the Takhtajan-Babujian model is
known for each S, and its exact solution shows that its low-
energy limit is described by WZW2S. However, generically
the effective theory of the spin-S chain contains various
perturbations to WZW2S. The general principle is that, all
the possible perturbations allowed by the symmetries
should be present, unless parameters in the Hamiltonian
are fine-tuned. In fact, the Takhtajan-Babujian model
corresponds to the special multicritical point where the
parameters are fine-tuned so that all the relevant perturba-
tions vanish. More generic models usually have relevant
perturbations which drive the system away from the
original WZW2S fixed point, under RG.
To discuss the RG flow, we need to identify symmetries

of the system and their representation in the field theory.
In this Letter, we limit ourselves to models with the global
SU(2) symmetry of spin rotation. Furthermore, we consider
the models which are invariant under the translation by one
site, T1∶Sj → Sjþ1. The lattice translation symmetry T1 is
represented by the Z2 symmetry under g → −g, in the
WZW theory [14].
Modular invariance.—To see the consistency of a CFT, it

is convenient to consider the system on a torus. The torus
can be defined in terms of complex coordinates z and z̄
with the identifications z ∼ zþ 2π and z ∼ zþ 2πτ with the
modulus τ ∈ C. The conformal invariance enhanced by
the SU(2) symmetry (Kac-Moody algebra) dictates that
the partition function on the torus is generally given as

Zðτ; τ̄Þ ¼
Xk=2

j;j0¼0

χjðτÞXj;j0 χ̄j0 ðτ̄Þ; ð2Þ

where χjðτÞ and χ̄j0 ðτ̄Þ are Kac-Moody characters as
functions of the modulus τ, corresponding to holomorphic
and anti-holomorphic parts [23]. The characters are labeled
by the “spin” j ¼ 0; 1=2;…; k=2. The coefficients Xj;j0

count the number of the primary field with the spin ðj; j0Þ.
Thus Xj;j0 must be non-negative integers in a consis-
tent CFT.
The same torus can be represented by different modular

parameters, which are related by modular transformations
generated by T ∶τ → τ þ 1 and S∶τ → −1=τ. Here T
twists the spatial boundary condition and S exchanges
the space and imaginary-time directions [24]. Since these
keep the underlying torus unchanged, a physically sensible
partition function should be invariant under them. This
requirement, which is called modular invariance, in fact
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leads to quite a powerful constraint on a possible consistent
CFT. In the present context, Xj;j0 are strongly constrained
by the modular invariance so as to be a non-negative
integer [23,24].
The standard partition function of WZWk on the torus

with the periodic boundary conditions is given by

ZSUð2Þðτ; τ̄Þ ¼ Trðe−2πImτHei2πReτPÞ; ð3Þ

where H and P are the total energy and momentum,
respectively. This indeed turns out to be modular invariant
partition function with Xj;j0 ¼ δj;j0 .
However, this is not the only possible modular invariant

partition function. Since WZWk also possesses the discrete
Z2 symmetry g → −g, we also consider projecting the
Hilbert space onto the subspace which is symmetric under
g → −g. The resulting partition function reads

Zproj
þ ðτ; τ̄Þ ¼ TrðPþe−2πImτHei2πReτPÞ; ð4Þ

where Pþ is the projection operator onto the subspace
which is even under g → −g. In the path-integral formal-
ism, the insertion of Pþ is equivalent to averaging over the
periodic and the antiperiodic boundary conditions on g in
the imaginary time direction. As a consequence, Zproj

þ is not
modular invariant. We can construct a modular invariant
partition function based on Zproj

þ , by “gauging” the Z2

symmetry also in the spatial direction. This procedure is
known as orbifold construction, and the resulting partition
function of the Z2 orbifold of WZWk reads

Zþðτ; τ̄Þ ¼ ð1þ S þ TSÞZproj
þ ðτ; τ̄Þ − ZSUð2Þðτ; τ̄Þ: ð5Þ

Despite the construction to make it modular invariant, in
fact, Zþðτ; τ̄Þ is modular invariant only if k is even; it is
modular noninvariant if k is odd [13,24]. This is an example
of a global anomaly in quantum field theory. While the
presence of this anomaly can be interpreted by a con-
struction of SO(3) WZW theory [13] as SU(2) modulo
g ∼ −g is SO(3), the physical implications of the anomaly
has not been elucidated.
Consequences of the global anomaly.—Now we shall

argue that there are indeed very profound consequences.
First, we consider a RG flow from WZWk to WZWk0

induced by perturbations allowed within the SU(2) and the
Z2 (g → −g) symmetries, for an even k. While both fixed
points have the SU(2) Kac-Moody and Z2 symmetries for
any k and k0, the level k0 of the infrared fixed point is not
arbitrary. Since k is assumed to be even, for the ultraviolet
fixed point WZWk, the Z2 orbifold is a consistent con-
formal field theory with a modular invariant partition
function. Because the orbifold construction is given by
summation over partition functions with various boundary
conditions, it should not affect the RG flow in the bulk. In
other words, once the projection onto the symmetric

subspace is done consistently, the RG flow can be followed
under the projection. Thus the RG flow between WZW
theories under the Z2 symmetry implies a corresponding
RG flow between their Z2 orbifolds. This means that, the
infrared fixed point WZWk0 should have a consistent Z2

orbifold and thus k0 must be even.
Next we consider the RG flow from WZWk to WZWk0 ,

when k is odd. Now the ultraviolet fixed point has the
global anomaly and the Z2 orbifold is ill defined. There is
no a priori reason that the infrared fixed point has the same
anomaly, since symmetries can, generally speaking, emerge
in the infrared limit. Nevertheless, below we shall argue
that the global anomaly in the ultraviolet fixed point is
“inherited” by the infrared limit.
Naively, since the theory has the discrete Z2 symmetry

g → −g, we expect that we can consider projection of the
entire Hilbert space onto the subspace which is symmetric
under g → −g. However, the anomaly for odd k precisely
means that there is no consistent CFT defined within the
symmetric (or antisymmetric) subspace. The odd-k WZWk
is inconsistent unless both symmetric and antisymmetric
sectors are included. This observation can be related to the
“gappability” of the theory. In general, a CFT has relevant
operators in its spectrum. Once the theory is perturbed by a
relevant operator, generically the theory would become
massive; the excited states would be separated from the
ground state by a nonvanishing mass gap. Usually the
ground state in such a system is unique. If this is the case,
because of the Z2 symmetry of the theory, the unique
ground state is either symmetric or antisymmetric with
respect to the Z2 symmetry. Then, in order to describe the
low-energy physics, we can consider a projection onto
symmetric or antisymmetric sector of the Hilbert space.
However, for odd k, the global anomaly of WZWk means
that such a projection does not yield a consistent quantum
field theory, Therefore, in order to open a mass gap, the
global anomaly for odd k requires that the ground states
below the gap exist in both the symmetric and antisym-
metric sectors and are doubly degenerate. This signals the
spontaneous breaking of the g → −g symmetry [25].
The above statement corresponds to a field-theory version
of the Lieb-Schultz-Mattis theorem [15–17], as it will
become clearer in the correspondence with spin chains
discussed below.
Now suppose there is a RG flow from WZWk with an

odd k to WZWk0 with an even k0, we can further perturb the
infrared fixed point to obtain a massive (gapped) field
theory with a unique ground state (corresponding to
WZW0). This contradicts with the ingappability of
WZWk discussed above. Thus k0 must also be odd.
Combining the results for even and odd k, we obtain the
following statement.
When there is a RG flow from WZWk to WZWk0 , if

the SU(2) symmetry and the Z2 symmetry g → −g are
respected, k0 < k and k0 ≡ k mod 2.
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In addition, it has been known that k0 < k thanks to
Zamolodchikov’s c-theorem [27], which dictates that the
central charge of the infrared fixed point WZWk0 should be
smaller than that of the ultraviolet one WZWk.
The implications of the above field-theory constraint on

spin chains is as follows. As discussed earlier, non-Abelian
bosonization of a spin-S HAFM chain yields WZWk with
k ¼ 2S, with perturbations allowed by the symmetries.
Thus we find the following:
The critical behavior of a general spin-S HAFM chain is

described by WZWk with k≡ 2S mod 2, as long as the
Hamiltonian possesses the SU(2) spin rotation symmetry
and the lattice translation symmetry.
In other words, critical phenomena in 1þ 1 dimensions

with SU(2) and Z2 symmetry of g → −g are grouped into
two symmetry-protected classes: one consists of WZWk
with even k and the other with odd k. In the presence of the
SU(2) spin rotation symmetry and the lattice translation
symmetry, general HAFM chains with integer spin S can
only realize the former, while those with half-odd-integer
spin S can only realize the latter. The present argument can
also be generalized to the case of the site-centered inversion
symmetry [24,28,29].
Affleck and Haldane [14] argued, based on the large-k

semiclassical analysis, WZWk with the leading perturba-
tion allowed under the g → −g symmetry, ðtrgÞ2, can be
mapped to the O(3) nonlinear sigma model at the topo-
logical angle θ ¼ πk. Given that it is equivalent to WZW0

or WZW1 when k is even or odd, respectively, their result is
a special case of the present one. On the other hand, the
present result generalizes significantly that of Ref. [14] in
restricting RG flows among k > 1 fixed points induced by
generic perturbations.
Examples.—Let us now discuss several concrete cases, in

light of the present result.
Ziman and Schulz studied translation invariant S ¼ 3=2

antiferromagnetic chains numerically and confirmed that,
while the Takhtajan-Babujian model is described by
WZW3, away from the special Takhtajan-Babujian point
the system is described by WZW1 [30]. Namely, there is a
RG flow from WZW3 to WZW1, in accordance with the
present result. The critical behavior corresponding to
WZW2 is not found in the model, although it is allowed
by the c-theorem.
Another interesting example is the translation invariant

spin-S model [20]

HJ1-J3 ¼
X

j

½J1Sj ·Sjþ1þJ3fðSj−1 ·SjÞðSj ·Sjþ1ÞþH:c:g�:

ð6Þ

This model has the WZW2S quantum critical point J3c > 0
[31], even though the model is not at the integrable
Takhtajan-Babujian point. Again this is consistent with
our selection rule.

An S ¼ 1 spin chain of Ref. [18] is a highly nontrivial
example of our theory. It possesses a WZW4 multicritical
point whose level is higher than 2S and still consistent with
our selection rule.
We stress that our selection rule is protected by the one-

site translation symmetry. In fact, it can be removed by
breaking the translation symmetry explicitly. For example,
an extended model [21]

HJ1-J3-δ ¼ HJ1-J3 − J1δ
X

j

ð−1ÞjSj · Sjþ1 ð7Þ

breaks the one-site translation symmetry explicitly, when
δ ≠ 0. When S ¼ 1, the model Eq. (7) exhibits a critical
line of c ¼ 1 connected to the multicritical point with
c ¼ 3=2. This means that WZW2 can flow to WZW1 in the
absence of the translation symmetry. A similar RG flow
from the level 2 to the level 1 is found in the S ¼ 1 bilinear-
biquadratic chain with the bond alternation [19]. The bond
alternation breaks the lattice translation and the site-
centered inversion symmetries, but keeps the time reversal
and the bond-centered inversion symmetries. This is con-
sistent with our analysis that either the lattice translation or
the site-centered inversion symmetry protects the two
categories, while the time reversal nor the site-centered
inversion symmetry does not [24].
Observable consequences.—The Raman spectroscopy is

important in studying one-dimensional spin systems [32],
probing the dynamical correlation of the Raman operator
R ∼

P
jSj · Sjþ1 in spin chains [33,34]. Dimensional

analysis leads to the Raman spectrum IðωÞ ∝ ðω=JÞ2x−2
in the low energy limit, ℏω ≪ kBT ≪ J, where ω is the
Raman frequency shift, J is the (typical) spin-spin inter-
action energy scale, and x is the scaling dimension of R.
Near the WZWk quantum critical point of a translation-
invariant spin chain, we can derive R ∝

R
dxðtrgÞ2, which

implies x ¼ 2=ð2þ kÞ. If the one-site translation symmetry
is broken, R ∝

R
dxtrg and x ¼ 3=½4ð2þ kÞ�. Thus the

Raman spectrum IðωÞ provides a rather direct probe of the
level k of the effectiveWZWk field theory of the spin chain,
and would also be useful in studying crossover among
WZW theories with different levels as discussed in this
Letter.
Conclusions.—In this Letter, we proposed the concept of

symmetry protection of critical phases. As an example, we
demonstrated that the SU(2) WZW theories are classified
into two categories of even and odd levels, in the presence
of the discrete Z2 symmetry of WZW theory which
corresponds to the one-site translation symmetry of spin
chains. The present result provides a new direction for the
classification of quantum phases, as well as a novel link
between the anomalies in field theory and condensed-
matter physics. It would be interesting to find more
examples with different symmetries or in higher
dimensions.
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