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A search for a new scalar field, called moduli, has been performed using the cryogenic resonant-mass
AURIGA detector. Predicted by string theory, moduli may provide a significant contribution to the dark
matter (DM) component of our Universe. If this is the case, the interaction of ordinary matter with the
local DM moduli, forming the Galaxy halo, will cause an oscillation of solid bodies with a frequency
corresponding to the mass of moduli. In the sensitive band of AURIGA, some 100 Hz at around 1 kHz, the
expected signal, withQ ¼ △f=f ∼ 106, is a narrow peak,△f ∼ 1 mHz. Here the detector strain sensitivity
is hs ∼ 2 × 10−21 Hz−1=2, within a factor of 2. These numbers translate to upper limits at 95% C.L. on
the moduli coupling to ordinary matter ðde þ dme

Þ≲ 10−5 around masses mϕ ¼ 3.6 × 10−12 eV, for the

standard DM halo model with ρDM ¼ 0.3 GeV=cm3.
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Introduction.—A possible source of dark matter (DM)
is an ultralight scalar field, Φ, with couplings to standard
model (ordinary) matter weaker than the gravitational
strength [1,2]. For instance, this field may be the moduli
field, which is predicted by string theory. The coupling of
this light field with ordinary matter implies a dependence
of the constants of nature on Φ [1]. In particular, electron
mass, me, and fine structure constant, α, vary with respect
to their nominal values following

meðx; tÞ ¼ me;0½1þ dme

ffiffiffiffiffiffiffiffiffiffiffiffi
4πGN

p
Φðx; tÞ� ð1Þ

αðx; tÞ ¼ α0½1þ de
ffiffiffiffiffiffiffiffiffiffiffiffi
4πGN

p
Φðx; tÞ� ð2Þ

where GN is the Newton’s constant and dme
(de) is the

dimensionless coupling of moduli to electrons (photons):Φ
can be identified with an electron mass modulus if dme

≠ 0

or an electromagnetic gauge modulus if de ≠ 0. Given
relations (1) and (2), if the field Φ makes up a significant
fraction of the local DM density, the volume of a solid will
oscillate in time [1]. In fact, assuming the mass of these
particles, mΦ, to be small enough compared to the energy
density of the DM, their number density within our Galaxy
is high and the field Φ can be described as a classical wave,
instead of individual particles:

Φðx; tÞ ¼ Φ0 cos ½mΦðt − v · xÞ� þOðv2Þ; ð3Þ

where jvj is the relative velocity of DM with respect to
Earth, roughly equal to the virial velocity in our Galaxy.
Thus, the interaction of ordinary matter with the surround-
ing DM field would make me and α oscillate in time,
causing a fluctuation of the atoms size, r0 ∼ 1=αme, in a
solid. This would imply a variation △L of the length of a
body, corresponding to a relative deformation with respect
to its equilibrium length, L0, given by

hðtÞ ¼ △LðtÞ
L0

¼
ffiffiffiffiffiffi
4π

p

MPl
ðdme

þ deÞΦðtÞ; ð4Þ

whereMPl is the Planck mass and ΦðtÞ the moduli field. To
calculate the power spectrum of relative deformation h, we
use the so-called standard halo model (SHM) that assumes a
spherical DM halo for the Galaxy with local DM density
ρDM¼ 0.3GeV=cm3, and an isotropic Maxwell-Boltzmann
speed distribution [3]. In this framework, if moduli account
for a significant fraction of DM in our Universe then the
corresponding field ΦðtÞ can be described as a zero mean
stochastic process with a Maxwell-Boltzmann power spec-
trum density [4], consequently the spectrum of the relative
deformation h is given by

hðfÞ ¼ h0
ðdme

þ deÞ
a

3
4fϕ

ðjfj − fϕÞ14e−ðjfj−fϕÞ=2aΘðjfj − fϕÞ

ð5Þ
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where h0 ¼ 1.5 × 10−16 Hz is a constant, fϕ ¼ mΦ=2π is
the frequency corresponding to moduli with a given mass,
a ¼ 1=3fϕhv2i and hv2i=c2 ∼ 10−6 the mean squared
velocity of the DM halo. Equation (5) tells us that the
signal strain is a monopole (isotropic strain) and approx-
imately monochromatic.
In this work, we analyze the data of the resonant-mass

gravitational wave detector AURIGA [5], searching for the
strain induced by hypothetical moduli DM, expressed by
Eq. (5). AURIGA represents the state of the art in the class
of gravitational wave cryogenic resonant-mass detectors. It
is located at the INFN National Laboratory of Legnaro
(Italy) and has been in continuous operation since the year
2004. The detector is based on a 2.2 × 103 kg, 3 m long bar
made of low-loss aluminum alloy (Al5056), cooled to
liquid helium temperatures. The fundamental longitudinal
mode of the bar, sensitive to the moduli induced oscillation,
has an effective mass M ¼ 1.1 × 103 kg and a resonance
frequencyωB=2π ≃ 900 Hz. Figure 1 shows a scheme of the
detector core and readout: the bar resonator is coupled to the
fundamental flexural mode of a mushroom-shaped lighter
resonator, with 6 kg effective mass and the same resonance
frequency. As the mechanical energy is transferred from the
bar to the lighter resonator, the motion is magnified by a
factor of roughly 15.A capacitive transducer [6], biasedwith
a static electric field of 107 V=m, converts the differential
motion between the bar and mushroom resonator into an
electrical current, which is finally detected by a low noise dc
SQUID amplifier [7] through a low-loss high-ratio super-
conducting transformer [8]. The transducer efficiency is
further increased by placing the resonance frequency of the
electrical LC circuit close to the mechanical resonance
frequencies [6], at 930 Hz. The detector can then be simply
modeled as a system of three coupled resonators: its
dynamics is described by three normal modes at separate
frequencies, each one being a superposition of the bar and
transducer mechanical resonators and the LC electrical
resonator [9]. The bar resonator motion is detected with a

sensitivity of order several 10−21 mHz−1=2 over a ∼100 Hz
bandwidth. The spectral noise floor in the relative deforma-
tion for the fundamental longitudinal mode, for the fre-
quency interval of maximum sensitivity is given in Fig. 2.
This sensitivity is accomplished thanks to the multimode
resonant capacitive transducer combined with the very low
noise dc SQUID amplifier.
Analysis workflow and data set.—Output from the read-

out chain of the AURIGA detector is digitized with a
sampling frequency of fs ¼ 4882.8 Hz through an Analog
to Digital Converter. As stated above, the motion of the bar
from the equilibrium length is converted into an electrical
signal. A calibration function obtained by a thorough
mechanical characterization of the system [9] is then used
to convert data from the electrical potential difference to
the relative deformation h of the AURIGA bar length.
Equation (5) shows that the relative deformation induced
by signal moduli, would be a sharp resonance around the
frequency corresponding to the moduli mass. Therefore, a
possible signal could be spotted by analyzing the noise
power spectrum of the calibrated AURIGA output PcalðfÞ.
PcalðfÞ gives the information concerning the relative
deformation of the bar:

h2 ¼
Z
△f

PcalðfÞdf: ð6Þ

The expected signal [Eq. (5)] has a bandwidth of about
△f ∼ 1 mHz in the sensitive band of AURIGA. Therefore,

FIG. 1. Scheme of the gravitational wave detector AURIGA.
The system comprises three coupled resonators with nearly equal
resonant frequency of about 900 Hz: the first longitudinal mode
of the cylindrical bar, the first flexural mode of the mushroom-
shaped resonator, which is also one of the plates of the
electrostatic capacitive transducer, and the low-loss electrical
LC circuit. The electrical current of the LC resonator is detected
by a low noise dc SQUID amplifier.

FIG. 2. Frequency spectrum of the bar relative deformation
computed on August 2015 AURIGA data (blue curve), obtained
by averaging N ¼ 400 power spectrums from one-hour-long data
streams. The experimental result is compared to the predicted
noise power spectrum density by Fluctuation-Dissipation theo-
rem (red line), showing a good matching. The thickness of the
data curve is due to the noise variance, reduced by averaging the
power spectrums. Holes in data correspond to excluded spurious
peaks associated with the known external background. Moreover,
these spurious peaks have shape and width not matching the
expectation from the moduli signal [see Fig. 3].
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we split the analyzed data set into one-hour-long data
streams and perform power spectrum computation on each
stream to achieve the proper spectrum resolution.
Computed power spectrums are averaged to reduce the
noise standard deviation and achieve a better sensitivity. If
N is the number of averaged power spectrums, the variance
of the noise is N1=2 [10], and the corresponding standard
deviation on h decreases with the number of averages as
N1=4. Thus, a good sensitivity on the moduli signal is
already achieved with few weeks of data. Using the entire
data set acquired by AURIGA (∼10 years) would improve
the sensitivity just by a factor of 3. The search for the DM
moduli is then performed on a data set one month long
(acquired by the AURIGA detector during August 2015).
The AURIGA detector was running under stable condi-
tions; stability of the detector is inferred by the stable
frequencies and shape of the three main detector’s modes,
checked by studying the evolution of the detector power
spectrum on the analyzed data set. Spikes in time due to
energetic background events could hide a possible signal
from moduli and must be removed from the data set: for
each data stream in the time domain the rms is computed,
obtaining a distribution of the rms value for the whole data
set; data affected by energetic background lie in the high
value tail of the distribution. A cut on the rms is then set to
discard data with large rms values. This cut still allows us to
maintain a 86% duty cycle of the detector.
After cleaning data streams with a rms cut, they are

windowed in the time domain using a Hann window type,
which allows a good frequency resolution and reduced
spectral leakage. The measured bar relative deformation
spectrum is shown in Fig. 2. As shown by the figure, the
measured noise is in excellent agreement with the predicted
noise behavior. The latter has been obtained out of the sum
of computed contributions from each noise source, in turn
derived by measured experimental parameters [9]. Few
spurious peaks, known to be associated with external
background sources, have been excluded from the analysis.
Simulation.—To prove we are able to detect this signal

with AURIGA, a simulation has been performed to study
the actual signal bandwidth within the detector sensitive
region and to fine-tune the analysis workflow. Equation (5)
is exploited to simulate a signal with fϕ ⋍ 867 Hz and
coupling ðde þ dme

Þ ¼ 5 × 10−4, which is smaller than the
natural values expected for dme

[1]. fϕ lies close to the first
minimum of the AURIGA noise curve, shown in Fig. 2.
Given the narrow bandwidth of this signal, we assumed the
noise to be white, hnii¼ 0, hninji¼ σ2δij, around the signal
peak, with a standard deviation σ ¼ 2 × 10−21 Hz−1=2,
equal to the noise level at fϕ ⋍ 867 Hz (see Fig. 2). We
have generated an amount of data comparable to the real
data set and applied our analysis pipeline obtaining the
result shown in Fig. 3. The spectrum of the simulated signal
is spread around ∼10 bins of the spectrum as shown in
Fig. 3, blue triangles. The simulated data have been injected

into the real data set and in Fig. 3, red circles, we show that
the injected signal is well reconstructed at the frequency fϕ
and it is not removed by the rms cut applied to the data
streams. We also show the theoretical signal plus noise,
Fig. 3, green line, obtained using same parameters as for
the simulation. The little discrepancy between theory and
simulation (injection), can be attributed to the minimal
leakage due to the windowing of data.
Statistical analysis.—The procedure followed for the

statistical analysis of the result shown in Fig. 2 is the one
proposed by Feldman and Cousin [11]. Each bin of the
distribution in Fig. 2 has a contribution from the noise
and a possible contribution from the signal. The squared
value of a bin is the result of averaging N power spectrums,
then its distribution follows a noncentral χ2 with N degree
of freedom. Since in our case N ∼ 400 the squared bin
distribution can be approximated by the followingGaussian:

Pðx̄jμÞ ¼ C exp

�
−
ðx̄ − σ2 − μ2Þ2
2
N σ

4ð1þ 2 μ2

σ2
Þ

�
ð7Þ

with normalization factor

C ¼ N1=2

σ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð1þ 2 μ2

σ2
Þ

q ð8Þ

where x̄ is the squared bin content, σ2 is the expected noise
level and μ the signal strength. The statistical behavior of the
bins in the distribution of Fig. 2 is confirmed by data as
predicted by Eq. (7). This is shown in Fig. 4. By means of

FIG. 3. (blue triangle) Simulation of amoduli signalwithmoduli
couplings ðdeþdme

Þ¼5×10−4 and frequency fϕ⋍867Hz plus
white noise with standard deviation σ ¼ 2 × 10−21 Hz−1=2, equal
to the detector noise level at fϕ. (red circle) Same simulated signal
injected into the real data. The signal is a narrow peak with a
△f ⋍ 1 mHz bandwidth and spread around about 10 bins. (green
line) Plot of the power density spectrum in Eq. (5) plus a constant
accounting for the white noise with the same parameters of
the simulation.
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Eq. (7) we build the confidence belt in the parameter space
ðx̄; μ2Þ, delimited by the values (x1ðμÞ; x2ðμÞ) such thatZ

x2ðμÞ

x1ðμÞ
Pðx̄jμÞdx̄ ¼ PðμÞ ð9Þ

for each value of the signal strength μ and a confidence level
PðμÞ ¼ 0.95. The contributions to the integral in Eq. (9) are
ordered following a specific ordering function, as reported
in Ref. [11], in order to avoid problems on the parameter
estimation near the physical bounds of such parameters.
Equation (9) states that for a fixed hypothetical signal
strength μ, the observed value of the bin content x̄ falls
within the interval (x1ðμÞ; x2ðμÞ)with a probability equal to
PðμÞ. Thus, for each measured value of x̄ the upper and
lower limits on the measured signal strength, containing
the true value μ with a 95% probability, are obtained by
inversion of the constructed confidence belt. We set a
threshold, x̄th, corresponding to a maximum false alarm
probability of finding a signal, which is not actually there,
equal to 3 standard deviations away from the background
only hypothesis. For observed values of x̄ below x̄th we set an
upper limit on the signal strain. Values above the threshold
x̄th would correspond to an observed signal. Since in our
measurement in Fig. 2 we do not observe values exceeding
the threshold, we set upper limits on h at 95% confidence
level. Interpreting these upper limits as given by moduli
through Eq. (5), we convert these values in upper limits on
the sum of the couplings of an electromagnetic gauge
modulus and an electron mass modulus (de þ dme

) to
ordinary matter. To improve the upper limits, we exploited
the noise curve obtained adding the thermal noise prediction
from Fluctuation-Dissipation theorem and the noise con-
tribution from the SQUID. By performing a least squares fit
of data in Fig. 2, we obtained the upper limits at 95% C.L.
from the χ2 distribution. This allows us to get better upper
limits by taking into account a more precise estimation of

errors from the fit. Further improvement is obtained by
averaging bins in groups of 10 for data in Fig. 2, since the
signal would be distributed around ∼10 bins, as shown
by Fig. 3.
Results.—Final upper limits are reported in Fig. 5. The

upper limits set on the sum of the moduli couplings to
ordinary matter are better then ðde þ dme

Þ≃ 10−5 in the
sensitive band of AURIGA, △f ¼ ½850; 950� Hz, and
explore an interesting physical region of the parameter
space, within the natural parameter space for moduli [1].
The same figure reports upper limits on moduli couplings
obtained, as discussed in Ref. [1], from fifth-force (5F) [12]
and equivalence principle (EP) [13] tests. These are
sensitive to different linear combinations of the moduli
couplings, de and dme

; therefore, they are able to set limits
on the individual couplings. As shown by Fig. 5, these
limits are not probing the interesting parameter space in the
region where AURIGA is sensitive. With this result we
prove that AURIGA, a gravitational wave resonant detec-
tor, would be capable of detecting light DM candidates with
an interesting sensitivity within its bandwidth. We point out
that this level of sensitivity can be achieved only by
resonant mass detectors, and not by modern laser interfer-
ometers developed for gravitational wave detection, such
as LIGO [14] and Virgo [15], even if these have better
sensitivity than resonant mass detectors for gravitational
waves and recently observed the first event due to a
gravitational wave signal [16]. In fact, because of the
monopole nature of the expected moduli strain, we do not

FIG. 4. Distributions of the possible values of three generic bins
in the relative bar deformation spectrum shown in Fig. 2. The
distributions are well fitted by a Gaussian (red lines) with a mean
equal to the noise level at the considered bin frequency and a
standard deviation the standard deviation of the noise: (left)
f ¼ 857 Hz, hh2i ¼ 2.1 × 10−41 Hz−1, σh2 ¼ 1.0 × 10−42 Hz−1,
χ2=ndf¼12.2=8; (center) f¼ 890Hz, hh2i ¼ 2.1 × 10−41 Hz−1,
σh2 ¼1.1×10−42Hz−1, χ2=ndf¼4.8=5; (right) f¼940Hzhh2i¼
8.1×10−42Hz−1, σh2 ¼ 3.8 × 10−43 Hz−1, χ2=ndf ¼ 8.3=7.

FIG. 5. Upper limits on the sum of the moduli couplings
(de þ dme

) to ordinary matter (red curve) obtained from AURIGA
data and reported in the moduli parameter space: bottom and top
horizontal axes represent the moduli mass mϕ and corresponding
frequency fϕ ¼ mϕ=2π, vertical axis represents the sum of
moduli coupling ðde þ dme

Þ values. Depicted green area shows
the natural parameter space preferred by theory. Other regions
represent 95% C. L. limits on fifth-force tests (5F, gray) and
equivalence-principle tests (EP, orange): continuous curves
(5F-dme

and EP-dme
) refer to upper limits on dme

, whereas
dashed curves (5F-de and EP-de) refer to upper limits on de.
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expect an interference signal as output from the interfer-
ometer due to moduli. Instead, since ultralight scalars can
mediate Yukawa forces between objects, one can explore
which is the expected effect on the relative position
between mirrors within an interferometer arm. This would
not be as efficient as exploiting the quadrupole gravitational
wave effect on interferometers [17].

M. C. is very grateful to Asimina Arvanitaki for calling
attention to the matter and for initial discussions. A. B., M.
C., A. O., and L. T. thank Asimina Arvanitaki and Ken Van
Tilburg for enlightening discussions and for a critical
reading of the manuscript. This work is funded by
Istituto Nazionale di Fisica Nucleare.

[1] A. Arvanitaki, S. Dimopoulos, and K. V. Tilburg, Sound of
Dark Matter: Searching for Light Scalars with Resonant-
Mass Detectors, Phys. Rev. Lett. 116, 031102 (2016).

[2] A. Khmelnitsky and V. Rubakov, Pulsar timing signal from
ultralight scalar dark matter, J. Cosmol. Astropart. Phys. 02
(2014) 019.

[3] J. D. Lewin and P. F. Smith, Review of mathematics,
numerical factors, and corrections for dark matter experi-
ments based on elastic nuclear recoil, Astropart. Phys. 6
(1996) 87.

[4] L. Krauss, J. Moody, F. Wilczek, and D. E. Morris,
Calculations for Cosmic Axion Detection, Phys. Rev. Lett.
55, 1797 (1985).

[5] M. Cerdonio et al., The ultracryogenic gravitational-wave
detector AURIGA, Classical Quantum Gravity 14, 1491
(1997).

[6] L. Baggio et al., 3-Mode Detection for Widening the
Bandwidth of Resonant Gravitational Wave Detectors,
Phys. Rev. Lett. 94, 241101 (2005).

[7] A. Vinante, R. Mezzena, G. Andrea Prodi, S. Vitale, M.
Cerdonio, P. Falferi, and M. Bonaldi, Dc superconducting
quantum interference device amplifier for gravitational
wave detectors with a true noise temperature of 16 μK,
Appl. Phys. Lett. 79, 2597 (2001).

[8] M. Bonaldi, P. Falferi, R. Dolesi, M. Cerdonio, and S.
Vitale, High Q tunable LC resonator operating at cryogenic
temperature, Rev. Sci. Instrum. 69, 3690 (1998).

[9] A. Vinante, Present performance and future upgrades of the
AURIGA capacitive readout, Classical Quantum Gravity
23, S103 (2006).

[10] D. G. Manolakis and J. G. Proakis, Digital Signal
Processing: Principles, Algorithms and Applications
(Prentice-Hall, Upper Saddle River, NJ, 1996), 3rd ed.,
Chap. 12, p. 908.

[11] G. J. Feldman and R. D. Cousin, A Unified approach to the
classical statistical analysis of small signals, Phys. Rev. D
57, 3873 (1998).

[12] E. Adelberger, B. R. Heckel, and A. Nelson, Tests of the
gravitational inverse-square law, Annu. Rev. Nucl. Part. Sci.
53, 77 (2003).

[13] S. Schlamminger, K.-Y. Choi, T. A. Wagner, J. H. Gundlach,
and E. G. Adelberger, Test of the Equivalence Principle
Using a Rotating Torsion Balance, Phys. Rev. Lett. 100,
041101 (2008).

[14] LIGO Scientific Collaboration, Advanced LIGO, Classical
Quantum Gravity 32, 074001 (2015).

[15] Virgo Collaboration, Advanced Virgo: A second-generation
interferometric gravitational wave detector, Classical
Quantum Gravity 32, 024001 (2014).

[16] LIGO Scientific Collaboration and Virgo Collaboration,
Observation of Gravitational Waves from a Binary Black
Hole Merger, Phys. Rev. Lett. 116, 061102 (2016).

[17] A. Arvanitaki, J. Huang, and K. V. Tilburg, Searching for
Dilaton Dark Matter with Atomic Clocks, Phys. Rev. D 91,
015015 (2015).

PRL 118, 021302 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

13 JANUARY 2017

021302-5

http://dx.doi.org/10.1103/PhysRevLett.116.031102
http://dx.doi.org/10.1088/1475-7516/2014/02/019
http://dx.doi.org/10.1088/1475-7516/2014/02/019
http://dx.doi.org/10.1016/S0927-6505(96)00047-3
http://dx.doi.org/10.1016/S0927-6505(96)00047-3
http://dx.doi.org/10.1103/PhysRevLett.55.1797
http://dx.doi.org/10.1103/PhysRevLett.55.1797
http://dx.doi.org/10.1088/0264-9381/14/6/016
http://dx.doi.org/10.1088/0264-9381/14/6/016
http://dx.doi.org/10.1103/PhysRevLett.94.241101
http://dx.doi.org/10.1063/1.1408276
http://dx.doi.org/10.1063/1.1149166
http://dx.doi.org/10.1088/0264-9381/23/8/S14
http://dx.doi.org/10.1088/0264-9381/23/8/S14
http://dx.doi.org/10.1103/PhysRevD.57.3873
http://dx.doi.org/10.1103/PhysRevD.57.3873
http://dx.doi.org/10.1146/annurev.nucl.53.041002.110503
http://dx.doi.org/10.1146/annurev.nucl.53.041002.110503
http://dx.doi.org/10.1103/PhysRevLett.100.041101
http://dx.doi.org/10.1103/PhysRevLett.100.041101
http://dx.doi.org/10.1088/0264-9381/32/7/074001
http://dx.doi.org/10.1088/0264-9381/32/7/074001
http://dx.doi.org/10.1088/0264-9381/32/2/024001
http://dx.doi.org/10.1088/0264-9381/32/2/024001
http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1103/PhysRevD.91.015015
http://dx.doi.org/10.1103/PhysRevD.91.015015

